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Modern Algebra I

Lecture 22:

Homomorphisms of rings (continued).
Prime and maximal ideals.



Homomorphism of rings

Definition. Let R and R ′ be rings. A function f : R → R ′ is
called a homomorphism of rings if f (r1 + r2) = f (r1) + f (r2)
and f (r1r2) = f (r1)f (r2) for all r1, r2 ∈ R .

Properties of homomorphisms:

• If H ′ is a subring of R ′, then f −1(H ′) is a subring of R .

• If I ′ is a two-sided (resp. left, right) ideal in R ′, then
f −1(I ′) is a two-sided (resp. left, right) ideal in R .

• The kernel Ker(f ) = f −1(0) is a two-sided ideal in R .

• If H is a subring of R , then f (H) is a subring of R ′.

• If I is a two-sided (resp. left, right) ideal in R , then f (I ) is
a two-sided (resp. left, right) ideal in f (R), but may not be an
ideal in R ′.



Given a nonempty set S and a ring R , let F(S ,R) be the ring
of all functions h : S → R .

• Evaluation at a point.

Let us fix a point x0 ∈ S and define a function
φ : F(S ,R) → R by φ(h) = h(x0). Then φ is a
homomorphism of rings.

• Restriction to a subset.

Let S0 be a nonempty subset of S . A homomorphism
φ : F(S ,R) → F(S0,R) is given by φ(h) = h|S0 .

• Extension to a larger set.

Let S1 be a set that contains S . For any function h : S → R
let φ(h) = h1, where the function h1 : S1 → R is defined by
h1(x) = h(x) if x ∈ S and h1(x) = 0 otherwise. Then
φ : F(S ,R) → F(S1,R) is a homomorphism of rings.



Isomorphism of rings

Definition. Let R and R ′ be rings. A function f : R → R ′ is
called an isomorphism of rings if it is bijective and a
homomorphism of rings.

A ring R is said to be isomorphic to a ring R ′ if there exists
an isomorphism of rings f : R → R ′.

Theorem Isomorphism is an equivalence relation on the set
of all rings.

Theorem The following properties of rings are preserved
under isomorphisms:
• commutativity,
• having the unity,
• having divisors of zero,
• being an integral domain,
• being a field.



Fundamental Theorem on Homomorphisms

Theorem Given a homomorphism f : R → R ′,
the factor ring R/Ker(f ) is isomorphic to f (R).

Proof. The factor ring is also a factor group. We know from
group theory that an isomorphism of additive groups is given
by φ(r + K ) = f (r) for any r ∈ R , where K = Ker(f ), the
kernel of f . It remains to check that

φ((r1 + K )(r2 + K )) = φ(r1 + K )φ(r2 + K )

for all r1, r2 ∈ R . Indeed, φ((r1 + K )(r2 + K )) = φ(r1r2 + K )
= f (r1r2) = f (r1)f (r2) = φ(r1 + K )φ(r2 + K ).

Example:

• Factor ring Z/nZ is isomorphic to Zn.



Matrix model of complex numbers

Consider a function φ : C → M2,2(R) given by

φ(x + iy ) =

(

x −y
y x

)

for all x , y ∈ R. Then φ is a homomorphism of rings.

Indeed, for any real numbers x , y , x ′ and y ′ we have
(x + iy ) + (x ′ + iy ′) = (x + x ′) + i(y + y ′) and

(

x −y
y x

)

+

(

x ′ −y ′

y ′ x ′

)

=

(

x + x ′ −(y + y ′)
y + y ′ x + x ′

)

.

Further, (x + iy )(x ′ + iy ′) = (xx ′ − yy ′) + i(xy ′ + yx ′) and
(

x −y
y x

)(

x ′ −y ′

y ′ x ′

)

=

(

xx ′ − yy ′ −(xy ′ + yx ′)
xy ′ + yx ′ xx ′ − yy ′

)

.

The kernel Ker(φ) is clearly trivial. It follows that the ring C

is isomorphic to φ(C). In particular, φ(C) is a field.



Prime ideals

Definition. A (two-sided) ideal I in a ring R is called prime if
for any elements x , y ∈ R we have

xy ∈ I =⇒ x ∈ I or y ∈ I .

Example. In the ring Z, every nontrivial proper ideal is of the
form nZ, where n > 1. This ideal is prime if and only if n is
a prime number.

The entire ring R is always a prime ideal of itself. The trivial
ideal {0} is prime if and only if the ring R has no divisors of
zero.

Theorem The ideal I is prime in the ring R if and only if the
factor ring R/I has no divisors of zero.

Proof (“if”). Suppose xy ∈ I while x , y ∈ R \ I . Then
x + I 6= 0 + I and y + I 6= 0 + I while (x + I )(y + I ) =
xy + I = I so that x + I and y + I are divisors of zero in R/I .



Maximal ideals

Definition. A (two-sided) ideal I in a ring R is
called maximal if I 6= R and for any ideal J
satisfying I ⊂ J ⊂ R, we have J = I or J = R.

Example. In the ring Z, every nontrivial proper

ideal is of the form nZ, where n > 1. This ideal is
contained in an ideal mZ if and only if m divides n.

It follows that the ideal nZ is maximal if and only if
it is prime.

Theorem A proper ideal I in the ring R is maximal

if and only if the factor ring R/I has no (two-sided)
ideals other than the trivial ideal and itself.



Theorem A proper ideal I in the ring R is maximal

if and only if the factor ring R/I has no (two-sided)
ideals other than the trivial ideal and itself.

Proof. Consider a map φ : R → R/I given by φ(x) = x + I
for all x ∈ R . This map is a homomorphism of rings.

Suppose R/I has a nontrivial proper ideal J ′. Then
J = φ−1(J ′) is an ideal in R such that I ⊂ J ⊂ R . Since
the map φ is onto, it follows that J 6= I and J 6= R . In
particular, the ideal I is not maximal.

Conversely, assume that there is an ideal J in R such that
I ⊂ J ⊂ R while J 6= I and J 6= R . Then J ′ = φ(J) is an
ideal in φ(R) = R/I . The ideal J ′ is nontrivial since J is not
contained in the kernel Ker(φ) = I . Since I ⊂ J , it follows
that φ(J) = J ′ is disjoint from φ(R \ J). In particular, J ′ is
a proper ideal in R/I .



Theorem Suppose R is a commutative ring with

unity. Then R has no (two-sided) ideals other than
the trivial ideal and itself if and only if R is a field.

Proof. Assume R is a field and let I be a nontrivial ideal in R .
Take any nonzero element a ∈ I . Since R is a field, this
element admits a multiplicative inverse a−1. Then for any
x ∈ R we have x = 1x = (aa−1)x = a(a−1x) ∈ I . That is,
I = R .

Now assume R is not a field. Then there is a nonzero element
a ∈ R that does not admit a multiplicative inverse. Hence
aR = {ax | x ∈ R}, which is an ideal in R , does not contain
the unity 1. In particular, aR is a proper ideal. It is
nontrivial since a = a · 1 ∈ aR .



Corollary 1 Suppose R is a commutative ring with
unity. Then a proper ideal I ⊂ R is maximal if and

only if the factor ring R/I is a field.

Corollary 2 Suppose R is a commutative ring with
unity. Then any maximal ideal in R is prime.

Remark. If the ring R is not commutative then the

corollaries (and the preceding theorem) may fail.
For example, in the ring Mn,n(R) of n×n matrices
with real entries (n ≥ 2), the trivial ideal is maximal

but not prime. Note that this ring does have
one-sided proper nontrivial ideals.



Ideals in the ring of polynomials

Theorem Let F be a field. Then any ideal in the
ring F[x ] is of the form

p(x)F[x ] = {p(x)q(x) | q(x) ∈ F[x ]}

for some polynomial p(x) ∈ F[x ].

Theorem Let F be a field and p(x) ∈ F[x ] be a
polynomial of positive degree. Then the following

conditions are equivalent:
• p(x) is irreducible over F,

• the ideal p(x)F[x ] is prime,
• the ideal p(x)F[x ] is maximal,

• the factor ring F[x ]/p(x)F[x ] is a field.



Examples. • F = R, p(x) = x2 + 1.

The polynomial p(x) = x2 + 1 is irreducible over R. Hence
the factor ring R[x ]/I , where I = (x2 + 1)R[x ], is a field.
Any element of R[x ]/I is a coset q(x) + I . It consists of all
polynomials in R[x ] leaving a particular remainder when
divided by p(x). Therefore it is uniquely represented as
a + bx + I for some a, b ∈ R. We obtain that

(a + bx + I ) + (a′ + b′x + I ) = (a + a′) + (b + b′)x + I ,

(a + bx + I )(a′ + b′x + I ) = aa′ + (ab′ + ba′)x + bb′x2 + I
= (aa′ − bb′) + (ab′ + ba′)x + bb′(x2 + 1) + I
= (aa′ − bb′) + (ab′ + ba′)x + I .

It follows that a map φ : C → R[x ]/I given for all a, b ∈ R

by φ(a + bi) = a + bx + I is an isomorphism of rings. Thus
R[x ]/I is a model of complex numbers. Note that the
imaginary unit i corresponds to x + I , the coset of the
monomial x .



• F = Z2, p(x) = x2 + x + 1.

We have p(0) = p(1) = 1 6= 0 so that p has no zeros in Z2.
Since deg(p) ≤ 3, it follows that the polynomial p(x) is
irreducible over Z2. Therefore Z2[x ]/(x

2 + x + 1)Z2[x ] is a
field. This factor ring consists of 4 elements: 0, 1, α and
α + 1, where α = x + p(x)Z2[x ]. Observe that α and α + 1
are zeros of the polynomial p.

• F = Z2, p(x) = x3 + x + 1.

There are two polynomials of degree 3 irreducible over Z2:
p(x) = x3 + x + 1 and q(x) = p(x − 1) = x3 + x2 + 1. In
particular, the factor ring Z2[x ]/(x

3 + x + 1)Z2[x ] is a field.
It consists of 8 elements: 0, 1, β, β + 1, β2, β2 + 1, β2 + β
and β2 + β + 1, where β = x + p(x)Z2[x ]. Observe that β,
β2 and β2 + β are zeros of the polynomial p while β + 1,
β2 + 1 and β2 + β + 1 are zeros of the polynomial q.


