MATH 415
 Modern Algebra I

Lecture 22:
Homomorphisms of rings (continued). Prime and maximal ideals.

Homomorphism of rings

Definition. Let R and R^{\prime} be rings. A function $f: R \rightarrow R^{\prime}$ is called a homomorphism of rings if $f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)$ and $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ for all $r_{1}, r_{2} \in R$.

Properties of homomorphisms:

- If H^{\prime} is a subring of R^{\prime}, then $f^{-1}\left(H^{\prime}\right)$ is a subring of R.
- If I^{\prime} is a two-sided (resp. left, right) ideal in R^{\prime}, then $f^{-1}\left(I^{\prime}\right)$ is a two-sided (resp. left, right) ideal in R.
- The kernel $\operatorname{Ker}(f)=f^{-1}(0)$ is a two-sided ideal in R.
- If H is a subring of R, then $f(H)$ is a subring of R^{\prime}.
- If I is a two-sided (resp. left, right) ideal in R, then $f(I)$ is a two-sided (resp. left, right) ideal in $f(R)$, but may not be an ideal in R^{\prime}.

Given a nonempty set S and a ring R, let $\mathcal{F}(S, R)$ be the ring of all functions $h: S \rightarrow R$.

- Evaluation at a point.

Let us fix a point $x_{0} \in S$ and define a function $\phi: \mathcal{F}(S, R) \rightarrow R$ by $\phi(h)=h\left(x_{0}\right)$. Then ϕ is a homomorphism of rings.

- Restriction to a subset.

Let S_{0} be a nonempty subset of S. A homomorphism $\phi: \mathcal{F}(S, R) \rightarrow \mathcal{F}\left(S_{0}, R\right)$ is given by $\phi(h)=\left.h\right|_{S_{0}}$.

- Extension to a larger set.

Let S_{1} be a set that contains S. For any function $h: S \rightarrow R$ let $\phi(h)=h_{1}$, where the function $h_{1}: S_{1} \rightarrow R$ is defined by $h_{1}(x)=h(x)$ if $x \in S$ and $h_{1}(x)=0$ otherwise. Then $\phi: \mathcal{F}(S, R) \rightarrow \mathcal{F}\left(S_{1}, R\right)$ is a homomorphism of rings.

Isomorphism of rings

Definition. Let R and R^{\prime} be rings. A function $f: R \rightarrow R^{\prime}$ is called an isomorphism of rings if it is bijective and a homomorphism of rings.
A ring R is said to be isomorphic to a ring R^{\prime} if there exists an isomorphism of rings $f: R \rightarrow R^{\prime}$.

Theorem Isomorphism is an equivalence relation on the set of all rings.

Theorem The following properties of rings are preserved under isomorphisms:

- commutativity,
- having the unity,
- having divisors of zero,
- being an integral domain,
- being a field.

Fundamental Theorem on Homomorphisms

Theorem Given a homomorphism $f: R \rightarrow R^{\prime}$, the factor ring $R / \operatorname{Ker}(f)$ is isomorphic to $f(R)$.

Proof. The factor ring is also a factor group. We know from group theory that an isomorphism of additive groups is given by $\phi(r+K)=f(r)$ for any $r \in R$, where $K=\operatorname{Ker}(f)$, the kernel of f. It remains to check that

$$
\phi\left(\left(r_{1}+K\right)\left(r_{2}+K\right)\right)=\phi\left(r_{1}+K\right) \phi\left(r_{2}+K\right)
$$

for all $r_{1}, r_{2} \in R$. Indeed, $\phi\left(\left(r_{1}+K\right)\left(r_{2}+K\right)\right)=\phi\left(r_{1} r_{2}+K\right)$ $=f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)=\phi\left(r_{1}+K\right) \phi\left(r_{2}+K\right)$.

Example:

- Factor ring $\mathbb{Z} / n \mathbb{Z}$ is isomorphic to \mathbb{Z}_{n}.

Matrix model of complex numbers

Consider a function $\phi: \mathbb{C} \rightarrow \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$
\phi(x+i y)=\left(\begin{array}{rr}
x & -y \\
y & x
\end{array}\right)
$$

for all $x, y \in \mathbb{R}$. Then ϕ is a homomorphism of rings.
Indeed, for any real numbers x, y, x^{\prime} and y^{\prime} we have $(x+i y)+\left(x^{\prime}+i y^{\prime}\right)=\left(x+x^{\prime}\right)+i\left(y+y^{\prime}\right)$ and

$$
\left(\begin{array}{rr}
x & -y \\
y & x
\end{array}\right)+\left(\begin{array}{rr}
x^{\prime} & -y^{\prime} \\
y^{\prime} & x^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
x+x^{\prime} & -\left(y+y^{\prime}\right) \\
y+y^{\prime} & x+x^{\prime}
\end{array}\right) .
$$

Further, $(x+i y)\left(x^{\prime}+i y^{\prime}\right)=\left(x x^{\prime}-y y^{\prime}\right)+i\left(x y^{\prime}+y x^{\prime}\right)$ and

$$
\left(\begin{array}{rr}
x & -y \\
y & x
\end{array}\right)\left(\begin{array}{rr}
x^{\prime} & -y^{\prime} \\
y^{\prime} & x^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
x x^{\prime}-y y^{\prime} & -\left(x y^{\prime}+y x^{\prime}\right) \\
x y^{\prime}+y x^{\prime} & x x^{\prime}-y y^{\prime}
\end{array}\right) .
$$

The kernel $\operatorname{Ker}(\phi)$ is clearly trivial. It follows that the ring \mathbb{C} is isomorphic to $\phi(\mathbb{C})$. In particular, $\phi(\mathbb{C})$ is a field.

Prime ideals

Definition. A (two-sided) ideal I in a ring R is called prime if for any elements $x, y \in R$ we have

$$
x y \in I \Longrightarrow x \in I \text { or } y \in I \text {. }
$$

Example. In the ring \mathbb{Z}, every nontrivial proper ideal is of the form $n \mathbb{Z}$, where $n>1$. This ideal is prime if and only if n is a prime number.
The entire ring R is always a prime ideal of itself. The trivial ideal $\{0\}$ is prime if and only if the ring R has no divisors of zero.

Theorem The ideal I is prime in the ring R if and only if the factor ring R / I has no divisors of zero.

Proof ("if"). Suppose $x y \in I$ while $x, y \in R \backslash I$. Then
$x+I \neq 0+I$ and $y+I \neq 0+I$ while $(x+I)(y+I)=$ $x y+I=I$ so that $x+I$ and $y+I$ are divisors of zero in R / I.

Maximal ideals

Definition. A (two-sided) ideal $/$ in a ring R is called maximal if $I \neq R$ and for any ideal J satisfying $I \subset J \subset R$, we have $J=I$ or $J=R$.

Example. In the ring \mathbb{Z}, every nontrivial proper ideal is of the form $n \mathbb{Z}$, where $n>1$. This ideal is contained in an ideal $m \mathbb{Z}$ if and only if m divides n. It follows that the ideal $n \mathbb{Z}$ is maximal if and only if it is prime.

Theorem A proper ideal I in the ring R is maximal if and only if the factor ring R / I has no (two-sided) ideals other than the trivial ideal and itself.

Theorem A proper ideal $/$ in the ring R is maximal if and only if the factor ring R / I has no (two-sided) ideals other than the trivial ideal and itself.

Proof. Consider a map $\phi: R \rightarrow R / I$ given by $\phi(x)=x+I$ for all $x \in R$. This map is a homomorphism of rings.
Suppose R / I has a nontrivial proper ideal J^{\prime}. Then $J=\phi^{-1}\left(J^{\prime}\right)$ is an ideal in R such that $I \subset J \subset R$. Since the map ϕ is onto, it follows that $J \neq I$ and $J \neq R$. In particular, the ideal / is not maximal.
Conversely, assume that there is an ideal J in R such that $I \subset J \subset R$ while $J \neq I$ and $J \neq R$. Then $J^{\prime}=\phi(J)$ is an ideal in $\phi(R)=R / I$. The ideal J^{\prime} is nontrivial since J is not contained in the kernel $\operatorname{Ker}(\phi)=I$. Since $I \subset J$, it follows that $\phi(J)=J^{\prime}$ is disjoint from $\phi(R \backslash J)$. In particular, J^{\prime} is a proper ideal in R / I.

Theorem Suppose R is a commutative ring with unity. Then R has no (two-sided) ideals other than the trivial ideal and itself if and only if R is a field.

Proof. Assume R is a field and let $/$ be a nontrivial ideal in R. Take any nonzero element $a \in I$. Since R is a field, this element admits a multiplicative inverse a^{-1}. Then for any $x \in R$ we have $x=1 x=\left(a a^{-1}\right) x=a\left(a^{-1} x\right) \in I$. That is, $I=R$.
Now assume R is not a field. Then there is a nonzero element $a \in R$ that does not admit a multiplicative inverse. Hence $a R=\{a x \mid x \in R\}$, which is an ideal in R, does not contain the unity 1 . In particular, $a R$ is a proper ideal. It is nontrivial since $a=a \cdot 1 \in a R$.

Corollary 1 Suppose R is a commutative ring with unity. Then a proper ideal $I \subset R$ is maximal if and only if the factor ring R / I is a field.

Corollary 2 Suppose R is a commutative ring with unity. Then any maximal ideal in R is prime.

Remark. If the ring R is not commutative then the corollaries (and the preceding theorem) may fail. For example, in the ring $\mathcal{M}_{n, n}(\mathbb{R})$ of $n \times n$ matrices with real entries $(n \geq 2)$, the trivial ideal is maximal but not prime. Note that this ring does have one-sided proper nontrivial ideals.

Ideals in the ring of polynomials

Theorem Let \mathbb{F} be a field. Then any ideal in the ring $\mathbb{F}[x]$ is of the form

$$
p(x) \mathbb{F}[x]=\{p(x) q(x) \mid q(x) \in \mathbb{F}[x]\}
$$

for some polynomial $p(x) \in \mathbb{F}[x]$.
Theorem Let \mathbb{F} be a field and $p(x) \in \mathbb{F}[x]$ be a polynomial of positive degree. Then the following conditions are equivalent:

- $p(x)$ is irreducible over \mathbb{F},
- the ideal $p(x) \mathbb{F}[x]$ is prime,
- the ideal $p(x) \mathbb{F}[x]$ is maximal,
- the factor ring $\mathbb{F}[x] / p(x) \mathbb{F}[x]$ is a field.

Examples. $\bullet \mathbb{F}=\mathbb{R}, p(x)=x^{2}+1$.

The polynomial $p(x)=x^{2}+1$ is irreducible over \mathbb{R}. Hence the factor ring $\mathbb{R}[x] / I$, where $I=\left(x^{2}+1\right) \mathbb{R}[x]$, is a field. Any element of $\mathbb{R}[x] / I$ is a coset $q(x)+I$. It consists of all polynomials in $\mathbb{R}[x]$ leaving a particular remainder when divided by $p(x)$. Therefore it is uniquely represented as $a+b x+l$ for some $a, b \in \mathbb{R}$. We obtain that

$$
\begin{aligned}
& (a+b x+I)+\left(a^{\prime}+b^{\prime} x+I\right)=\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) x+I, \\
& (a+b x+I)\left(a^{\prime}+b^{\prime} x+I\right)=a a^{\prime}+\left(a b^{\prime}+b a^{\prime}\right) x+b b^{\prime} x^{2}+I \\
& =\left(a a^{\prime}-b b^{\prime}\right)+\left(a b^{\prime}+b a^{\prime}\right) x+b b^{\prime}\left(x^{2}+1\right)+I \\
& \quad=\left(a a^{\prime}-b b^{\prime}\right)+\left(a b^{\prime}+b a^{\prime}\right) x+I .
\end{aligned}
$$

It follows that a map $\phi: \mathbb{C} \rightarrow \mathbb{R}[x] / I$ given for all $a, b \in \mathbb{R}$ by $\phi(a+b i)=a+b x+l$ is an isomorphism of rings. Thus $\mathbb{R}[x] / I$ is a model of complex numbers. Note that the imaginary unit i corresponds to $x+I$, the coset of the monomial x.

- $\mathbb{F}=\mathbb{Z}_{2}, p(x)=x^{2}+x+1$.

We have $p(0)=p(1)=1 \neq 0$ so that p has no zeros in \mathbb{Z}_{2}. Since $\operatorname{deg}(p) \leq 3$, it follows that the polynomial $p(x)$ is irreducible over \mathbb{Z}_{2}. Therefore $\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right) \mathbb{Z}_{2}[x]$ is a field. This factor ring consists of 4 elements: $0,1, \alpha$ and $\alpha+1$, where $\alpha=x+p(x) \mathbb{Z}_{2}[x]$. Observe that α and $\alpha+1$ are zeros of the polynomial p.

- $\mathbb{F}=\mathbb{Z}_{2}, p(x)=x^{3}+x+1$.

There are two polynomials of degree 3 irreducible over \mathbb{Z}_{2} : $p(x)=x^{3}+x+1$ and $q(x)=p(x-1)=x^{3}+x^{2}+1$. In particular, the factor ring $\mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right) \mathbb{Z}_{2}[x]$ is a field. It consists of 8 elements: $0,1, \beta, \beta+1, \beta^{2}, \beta^{2}+1, \beta^{2}+\beta$ and $\beta^{2}+\beta+1$, where $\beta=x+p(x) \mathbb{Z}_{2}[x]$. Observe that β, β^{2} and $\beta^{2}+\beta$ are zeros of the polynomial p while $\beta+1$, $\beta^{2}+1$ and $\beta^{2}+\beta+1$ are zeros of the polynomial \boldsymbol{q}.

