MATH 415
 Modern Algebra I

Lecture 24:
Euclidean algorithm.
Chinese remainder theorem.

Generators of an ideal

Let R be an integral domain.
Theorem 1 Suppose $I_{\alpha}, \alpha \in A$ is a nonempty collection of ideals in R. Then the intersection $\bigcap_{\alpha} I_{\alpha}$ is also an ideal in R.

Let S be a set (or a list) of some elements of R. The ideal generated by S, denoted (S) or $\langle S\rangle$, is the smallest ideal in R that contains S.

Theorem 2 The ideal (S) is well defined. Indeed, it is the intersection of all ideals that contain S.

Theorem 3 If $S=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ then the ideal (S) consists of all elements of the form $r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{k} a_{k}$, where $r_{1}, r_{2}, \ldots, r_{k} \in R$.

An ideal $(a)=a R$ generated by a single element is called principal. The ring R is called a principal ideal domain (PID) if every ideal is principal.

Greatest common divisor

Definition. Let R be an integral domain. Given nonzero elements $a_{1}, a_{2}, \ldots, a_{k} \in R$, their greatest common divisor $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is an element $c \in R$ such that

- c is a common divisor of $a_{1}, a_{2}, \ldots, a_{k}$, i.e., $a_{i}=c q_{i}$ for some $q_{i} \in R, 1 \leq i \leq k$,
- any common divisor of $a_{1}, a_{2}, \ldots, a_{k}$ is a divisor of c as well.

If $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ exists then it is unique up to multiplication by a unit.

Note that an element $c \in R$ is a common divisor of the elements $a_{1}, a_{2}, \ldots, a_{k}$ if and only if all these elements belong to the principal ideal $c R$. Another common divisor d is a divisor of c if and only if $c R \subset d R$. Therefore $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, if it exists, is a generator of the smallest principal ideal containing $a_{1}, a_{2}, \ldots, a_{k}$.

Theorem If R is a principal ideal domain, then
(i) the greatest common divisor $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ exists for any nonzero elements $a_{1}, a_{2}, \ldots, a_{k} \in R$;
(ii) $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)=r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{k} a_{k}$ for some $r_{1}, r_{2}, \ldots, r_{k} \in R$.

Proof. Consider an ideal $I=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ generated by the elements $a_{1}, a_{2}, \ldots, a_{k}$. Since the ring R is a principal ideal domain, we have $I=c R$ for some $c \in R$. It follows that $c=\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. Moreover, since $c \in I$, we have $c=r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{k} a_{k}$ for some $r_{1}, r_{2}, \ldots, r_{k} \in R$.

Relatively prime elements

Definition. Let R be an integral domain. Nonzero elements $a, b \in R$ are called relatively prime (or coprime) if $\operatorname{gcd}(a, b)=1$.

Theorem Suppose R is a principal ideal domain. If a nonzero element $c \in R$ is divisible by two coprime elements a and b, then it is divisible by their product $a b$.

Proof: By assumption, $c=a q_{1}$ and $c=b q_{2}$ for some $q_{1}, q_{2} \in R$. Since $\operatorname{gcd}(a, b)=1$ and R is a principal ideal domain, it follows that $r_{1} a+r_{2} b=1$ for some $r_{1}, r_{2} \in R$. Then $c=c\left(r_{1} a+r_{2} b\right)=r_{1} c a+r_{2} c b=r_{1} q_{2} a b+r_{2} q_{1} a b$ $=\left(r_{1} q_{2}+r_{2} q_{1}\right) a b$, which implies that c is divisible by $a b$.

Corollary Suppose R is a principal ideal domain. If a nonzero element $c \in R$ is divisible by pairwise coprime elements $a_{1}, a_{2}, \ldots, a_{k}$, then it is divisible by their product $a_{1} a_{2} \ldots a_{k}$.

Euclidean rings

Let R be an integral domain. A function
$E: R \backslash\{0\} \rightarrow \mathbb{Z}_{+}$is called a Euclidean function
on R if for any $x, y \in R \backslash\{0\}$ we have $x=q y+r$ for some $q, r \in R$ such that $r=0$ or $E(r)<E(y)$.
The ring R is called a Euclidean ring (or Euclidean domain) if it admits a Euclidean function.

In a Euclidean ring, division with remainder is well defined.

Theorem Any Euclidean ring is a principal ideal domain.

Euclidean algorithm

Lemma 1 If b divides a then $\operatorname{gcd}(a, b)=b$.
Lemma 2 Suppose R is a Euclidean ring. If b does not divide a and r is the remainder of a when divided by b, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
Idea of the proof: Since $a=b q+r$ for some $q \in R$, the pairs a, b and b, r have the same common divisors.

Theorem Suppose R is a Euclidean ring. Given two nonzero elements $a, b \in R$, there is a sequence $r_{1}, r_{2}, \ldots, r_{k}$ such that $r_{1}=a, r_{2}=b, r_{i}$ is the remainder of r_{i-2} when divided by r_{i-1} for $3 \leq i \leq k$, and r_{k} divides r_{k-1}. Then $\operatorname{gcd}(a, b)=r_{k}$.

Example. $R=\mathbb{Z}, a=1356, b=744$. $\operatorname{gcd}(a, b)=$?
We obtain

$$
\begin{aligned}
& 1356=744 \cdot 1+612 \\
& 744=612 \cdot 1+132 \\
& 612=132 \cdot 4+84 \\
& 132=84 \cdot 1+48 \\
& 84=48 \cdot 1+36 \\
& 48=36 \cdot 1+12 \\
& 36=12 \cdot 3
\end{aligned}
$$

Thus $\operatorname{gcd}(1356,744)=12$.

Problem. Find an integer solution of the equation $1356 m+744 n=12$.
Let us use calculations done for the Euclidean algorithm applied to 1356 and 744 .
$1356=744 \cdot 1+612$
$\Longrightarrow 612=1 \cdot 1356-1 \cdot 744$
$744=612 \cdot 1+132$
$\Longrightarrow 132=744-612=-1 \cdot 1356+2 \cdot 744$
$612=132 \cdot 4+84$
$\Longrightarrow 84=612-4 \cdot 132=5 \cdot 1356-9 \cdot 744$
$132=84 \cdot 1+48$
$\Longrightarrow 48=132-84=-6 \cdot 1356+11 \cdot 744$
$84=48 \cdot 1+36$
$\Longrightarrow 36=84-48=11 \cdot 1356-20 \cdot 744$
$48=36 \cdot 1+12$
$\Longrightarrow 12=48-36=-17 \cdot 1356+31 \cdot 744$
Thus $m=-17, n=31$ is a solution.

Alternative solution. Consider a matrix $\left(\begin{array}{ll|l}1 & 0 & 1356 \\ 0 & 1 & 744\end{array}\right)$, which is the augmented matrix of a system $\left\{\begin{array}{l}x=1356, \\ y=744 .\end{array}\right.$
We are going to apply elementary row operations to this matrix until we get 12 in the rightmost column.

$$
\begin{aligned}
& \left(\begin{array}{rr|r}
1 & 0 & 1356 \\
0 & 1 & 744
\end{array}\right) \rightarrow\left(\begin{array}{rr|r}
1 & -1 & 612 \\
0 & 1 & 744
\end{array}\right) \rightarrow\left(\begin{array}{rr|r}
1 & -1 & 612 \\
-1 & 2 & 132
\end{array}\right) \\
& \rightarrow\left(\begin{array}{rr|r}
5 & -9 & 84 \\
-1 & 2 & 132
\end{array}\right) \rightarrow\left(\begin{array}{rr|r}
5 & -9 & 84 \\
-6 & 11 & 48
\end{array}\right) \rightarrow\left(\begin{array}{rr|r}
11 & -20 & 36 \\
-6 & 11 & 48
\end{array}\right) \\
& \rightarrow\left(\begin{array}{rr|r}
11 & -20 & 36 \\
-17 & 31 & 12
\end{array}\right) \rightarrow\left(\begin{array}{rr|c}
62 & -113 & 0 \\
-17 & 31 & 12
\end{array}\right)
\end{aligned}
$$

Hence the above system is equivalent to

$$
\left\{\begin{array}{l}
62 x-113 y=0 \\
-17 x+31 y=12
\end{array}\right.
$$

Thus $m=-17, n=31$ is a solution to $1356 m+744 n=12$.

Problem. Find all common roots of real polynomials $p(x)=x^{4}+2 x^{3}-x^{2}-2 x+1$ and $q(x)=x^{4}+x^{3}+x-1$.

Common roots of p and q are exactly roots of their greatest common divisor $\operatorname{gcd}(p, q)$. We can find $\operatorname{gcd}(p, q)$ using the Euclidean algorithm.
First we divide p by q : $x^{4}+2 x^{3}-x^{2}-2 x+1=$
$=\left(x^{4}+x^{3}+x-1\right)(1)+x^{3}-x^{2}-3 x+2$.
Next we divide q by the remainder $r_{1}(x)=x^{3}-x^{2}-3 x+2$:
$x^{4}+x^{3}+x-1=\left(x^{3}-x^{2}-3 x+2\right)(x+2)+5 x^{2}+5 x-5$.
Next we divide r_{1} by the remainder $r_{2}(x)=5 x^{2}+5 x-5$:
$x^{3}-x^{2}-3 x+2=\left(5 x^{2}+5 x-5\right)\left(\frac{1}{5} x-\frac{2}{5}\right)$.
Since r_{2} divides r_{1}, it follows that

$$
\operatorname{gcd}(p, q)=\operatorname{gcd}\left(q, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=r_{2} .
$$

The polynomial $r_{2}(x)=5 x^{2}+5 x-5$ has roots $(-1-\sqrt{5}) / 2$ and $(-1+\sqrt{5}) / 2$.

Chinese Remainder Theorem

Theorem Let $n, m \geq 2$ be relatively prime integers and a, b be any integers. Then the system

$$
\left\{\begin{array}{l}
x \equiv a \bmod n \\
x \equiv b \bmod m
\end{array}\right.
$$

of congruences has a solution. Moreover, this solution is unique modulo $n m$.

Proof: Since $\operatorname{gcd}(n, m)=1$, we have $s n+t m=1$ for some integers s, t. Let $c=b s n+a t m$. Then

$$
\begin{aligned}
& c=b s n+a(1-s n)=a+(b-a) s n \equiv a(\bmod n), \\
& c=b(1-t m)+a t m=b+(a-b) t m \equiv b(\bmod m) .
\end{aligned}
$$

Therefore c is a solution. Also, any element of $[c]_{n m}$ is a solution. Conversely, if x is a solution, then $n \mid(x-c)$ and $m \mid(x-c)$, which implies that $n m \mid(x-c)$, i.e., $x \in[c]_{n m}$.

Problem. Solve simultaneous congruences $\left\{\begin{array}{l}x \equiv 3 \bmod 12, \\ x \equiv 2 \bmod 29 .\end{array}\right.$
The moduli 12 and 29 are coprime. First we use the Euclidean algorithm to represent 1 as an integral linear combination of 12 and 29:
$\left(\begin{array}{ll|l}1 & 0 & 12 \\ 0 & 1 & 29\end{array}\right) \rightarrow\left(\begin{array}{rr|r}1 & 0 & 12 \\ -2 & 1 & 5\end{array}\right) \rightarrow\left(\begin{array}{rr|r}5 & -2 & 2 \\ -2 & 1 & 5\end{array}\right)$
$\rightarrow\left(\begin{array}{rr|r}5 & -2 & 2 \\ -12 & 5 & 1\end{array}\right) \rightarrow\left(\begin{array}{rr|r}29 & -12 & 0 \\ -12 & 5 & 1\end{array}\right)$.
Hence $(-12) \cdot 12+5 \cdot 29=1$. Let $x_{1}=5 \cdot 29=145$,
$x_{2}=(-12) \cdot 12=-144$. Then

$$
\left\{\begin{array} { l }
{ x _ { 1 } \equiv 1 \operatorname { m o d } 1 2 , } \\
{ x _ { 1 } \equiv 0 \operatorname { m o d } 2 9 . }
\end{array} \quad \left\{\begin{array}{l}
x_{2} \equiv 0 \bmod 12, \\
x_{2} \equiv 1 \bmod 29
\end{array}\right.\right.
$$

It follows that one solution is $x=3 x_{1}+2 x_{2}=147$. The other solutions form the congruence class of 147 modulo $12 \cdot 29=348$.

Chinese Remainder Theorem (generalized)

Theorem Let $n_{1}, n_{2}, \ldots, n_{k} \geq 2$ be pairwise coprime integers and $a_{1}, a_{2}, \ldots, a_{k}$ be any integers. Then the system of congruences

$$
\left\{\begin{array}{l}
x \equiv a_{1} \bmod n_{1}, \\
x \equiv a_{2} \bmod n_{2} \\
\cdots \cdots \cdots \\
x \equiv a_{k} \bmod n_{k}
\end{array}\right.
$$

has a solution which is unique modulo $n_{1} n_{2} \ldots n_{k}$.
Idea of the proof: The theorem is proved by induction on k. The base case $k=1$ is trivial. The induction step uses the usual Chinese Remainder Theorem.

Problem. Solve simultaneous congruences

$\left\{\begin{array}{l}x \equiv 1 \bmod 3, \\ x \equiv 2 \bmod 4, \\ x \equiv 3 \bmod 5 .\end{array}\right.$
First we solve the first two congruences. Let $x_{1}=4, x_{2}=-3$.
Then $x_{1} \equiv 1 \bmod 3, x_{1} \equiv 0 \bmod 4$ and $x_{2} \equiv 0 \bmod 3$, $x_{2} \equiv 1 \bmod 4$. It follows that $x_{1}+2 x_{2}=-2$ is a solution.
The general solution is $x \equiv-2 \bmod 12$.
Now it remains to solve the system
$\left\{\begin{array}{l}x \equiv-2 \bmod 12, \\ x \equiv 3 \bmod 5 .\end{array}\right.$
We need to represent 1 as an integral linear combination of 12 and 5: $1=(-2) \cdot 12+5 \cdot 5$. Then a particular solution is $x=3 \cdot(-2) \cdot 12+(-2) \cdot 5 \cdot 5=-122$. The general solution is $x \equiv-122 \bmod 60$, which is the same as $x \equiv-2 \bmod 60$.

