MATH 415–501 Fall 2021

Sample problems for the final exam

Any problem may be altered or replaced by a different one!

Problem 1. For any positive integer n let $n\mathbb{Z}$ denote the set of all integers divisible by n.

- (i) Does the set $3\mathbb{Z} \cup 4\mathbb{Z} \cup 7\mathbb{Z}$ form a semigroup under addition? Does it form a group?
- (ii) Does the set $3\mathbb{Z} \cup 4\mathbb{Z} \cup 7\mathbb{Z}$ form a semigroup under multiplication? Does it form a group?

Problem 2. Consider a relation \sim on a group G defined as follows. For any $g, h \in G$ we let $g \sim h$ if and only if g is conjugate to h, which means that $g = xhx^{-1}$ for some $x \in G$ (where x may depend on g and h). Show that \sim is an equivalence relation on G.

Problem 3. Find all subgroups of the group G_{15} (multiplicative group of invertible congruence classes modulo 15.)

Problem 4. Let $\pi = (12)(23)(34)(45)(56)$, $\sigma = (123)(234)(345)(456)$. Find the order and the sign of the following permutations: π , σ , $\pi\sigma$, and $\sigma\pi$.

Problem 5. Let G be a group. Suppose H is a subgroup of G of finite index (G : H). Further suppose that K is a subgroup of H of finite index (H : K). Prove that K is a subgroup of finite index in G and, moreover, (G : K) = (G : H)(H : K).

Problem 6. Let G be the group of all symmetries of a regular tetrahedron T. The group G naturally acts on the set of vertices of T, the set of edges of T, and the set of faces of T.

- (i) Show that each of the three actions is transitive.
- (ii) Show that the stabilizer of any vertex is isomorphic to the symmetric group S_3 .
- (iii) Show that the stabilizer of any edge is isomorphic to the Klein 4-group $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- (iv) Show that the stabilizer of any face is isomorphic to S_3 .

Problem 7. Let S be a nonempty set and $\mathcal{P}(S)$ be the set of all subsets of S.

- (i) Prove that $\mathcal{P}(S)$ with the operations of symmetric difference \triangle (as addition) and intersection \cap (as multiplication) is a commutative ring with unity.
 - (ii) Prove that the ring $\mathcal{P}(S)$ is isomorphic to the ring of functions $\mathcal{F}(S, \mathbb{Z}_2)$.

Problem 8. Solve a system of congruences (find all solutions):

$$\begin{cases} x \equiv 2 \mod 5, \\ x \equiv 3 \mod 6, \\ x \equiv 6 \mod 7. \end{cases}$$

Problem 9. Find all integer solutions of a system

$$\begin{cases} 2x + 5y - z = 1, \\ x - 2y + 3z = 2. \end{cases}$$

[Hint: eliminate one of the variables.]

Problem 10. Factor a polynomial $p(x) = x^4 - 2x^3 - x^2 - 2x + 1$ into irreducible factors over the fields \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_5 and \mathbb{Z}_7 .

[Hint: notice that $p(x) = x^4 p(1/x)$.]

Problem 11. Let

$$M = \left\{ \begin{pmatrix} x & 0 \\ y & z \end{pmatrix} \mid x, y, z \in \mathbb{R} \right\}, \quad J = \left\{ \begin{pmatrix} 0 & 0 \\ y & 0 \end{pmatrix} \mid y \in \mathbb{R} \right\}.$$

- (i) Show that M is a subring of the matrix ring $\mathcal{M}_{2,2}(\mathbb{R})$.
- (ii) Show that J is a two-sided ideal in M.
- (iii) Show that the factor ring M/J is isomorphic to $\mathbb{R} \times \mathbb{R}$.

Problem 12. The polynomial $f(x) = x^6 + 3x^5 - 5x^3 + 3x - 1$ has how many distinct complex roots?

[Hint: multiple roots of f are also roots of the derivative f'.]