Homework assignment \#1

Problem 1. Determine which of the following functions $f: X \rightarrow Y$ are properly defined, that is, $f(x)$ is determined uniquely for any $x \in X$ and belongs to Y. Briefly explain.
(i) $f: \mathbb{Q} \rightarrow \mathbb{Q}$, given by $f(p / q)=q / p$ for all $p, q \in \mathbb{Z}^{+}$.
(ii) $g: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$, given by $g(p / q)=q / p$ for all $p, q \in \mathbb{Z}^{+}$.
(iii) $h: \mathbb{Q}^{+} \rightarrow \mathbb{Z}$, given by $h(p / q)=q-p$ for all $p, q \in \mathbb{Z}^{+}$.

Problem 2. For each of the following functions $f: X \rightarrow Y$ given by the same formula $f(x)=x^{3}-3 x$ but with different choices of the domain $X \subset \mathbb{R}$ and codomain $Y \subset \mathbb{R}$, determine whether it is injective, surjective or bijective.
(i) $X=[-3,3], Y=\mathbb{R}$.
(ii) $X=Y=[-2,2]$.
(iii) $X=[-1,1], Y=[-3,3]$.

Problem 3. Let $|X|$ denote the cardinality of a set X. Suppose $\left|A_{1}\right|=\left|A_{2}\right|$ and $\left|B_{1}\right|=\left|B_{2}\right|$ for some sets $A_{1}, A_{2}, B_{1}, B_{2}$. Prove that $\left|A_{1} \times B_{1}\right|=\left|A_{2} \times B_{2}\right|$.

Problem 4. For any set X let $\mathcal{P}(X)$ denote the set of all subsets of X (called the power set of $X)$. Prove that $|\mathcal{P}(X)| \neq|X|$.

Problem 5. For any $x, y \in \mathbb{Z}^{+}$let $x * y=z$, where z is the largest integer less than the product of x and y. Is $\left(\mathbb{Z}^{+}, *\right)$ a (properly defined) binary structure?

Problem 6. A binary operation $*$ on the set \mathbb{Z}^{+}is defined by $x * y=2^{x y}$ for all $x, y \in \mathbb{Z}^{+}$. Is this operation commutative? Is it associative?

Problem 7. Is there a binary operation on a set of two elements that is commutative but not associative?

Problem 8. How many different binary operations can be defined on a set of n elements? How many of those operations are commutative?

Problem 9. Let $(S, *)$ be a binary structure. An element $x \in S$ is called idempotent if $x * x=x$. Prove that the set of all idempotent elements is closed under the operation $*$ provided that $*$ is commutative and associative.

Problem 10. The following is a partially completed Cayley table for a certain associative operation. Complete the table. Briefly explain.

$*$	a	b	c	d
a	a	b	c	d
b	b	a	c	d
c	c	d	c	d
d				

