Homework assignment \#12

Problem 1. Let $\phi: R \rightarrow R^{\prime}$ be an isomorphism of rings and suppose I is a two-sided ideal in R. Prove that the factor ring R / I is isomorphic to the factor ring $R^{\prime} / \phi(I)$.

Problem 2 (2 pts). Consider the ring of functions $\mathcal{F}(\mathbb{Z}, \mathbb{R})$. Let I be the set of those functions $h: \mathbb{Z} \rightarrow \mathbb{R}$ that are zero everywhere except at finitely many points, i.e., $\mathbb{Z} \backslash h^{-1}(0)$ is a finite set.
(i) Show that I is an ideal in $\mathcal{F}(\mathbb{Z}, \mathbb{R})$.
(ii) Show that the ideal I is not maximal.

Problem 3 (2 pts). Let \mathbb{F} be a field. Given two polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and $q(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ in $\mathbb{F}[x]$, the formal composition $p \circ q$ is a polynomial given by $(p \circ q)(x)=a_{0}+a_{1} q(x)+a_{2}(q(x))^{2}+\cdots+a_{n}(q(x))^{n}$.
(i) Let $q \in \mathbb{F}[x]$. Show that the map $\phi_{q}: \mathbb{F}[x] \rightarrow \mathbb{F}[x]$ given by $\phi_{q}(p)=p \circ q$ is a homomorphism of rings.
(ii) In the case $\mathbb{F}=\mathbb{Q}$ or \mathbb{Z}_{p}, show that any homomorphism of the ring $\mathbb{F}[x]$ to itself is either identically zero or of the form ϕ_{q} for some $q \in \mathbb{F}[x]$.

Problem 4 (2 pts). Let \mathbb{F} be a field. For any polynomial $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ in $\mathbb{F}[x]$ we define a function $f_{p}: \mathbb{F} \rightarrow \mathbb{F}$ by $f_{p}(c)=a_{0}+a_{1} c+\cdots+a_{n} c^{n}$ for all $c \in \mathbb{F}$.
(i) Show that $f_{p \circ q}=f_{p} \circ f_{q}$ for all $p, q \in \mathbb{F}[x]$, where $p \circ q$ is the formal composition of polynomials and $f_{p} \circ f_{q}$ is the usual composition of functions.
(ii) Prove that formal composition is an associative operation on $\mathbb{F}[x]$ in the case \mathbb{F} is infinite. [Hint: use the fact that $p \mapsto f_{p}$ is a one-to-one map in the case \mathbb{F} is infinite.]
(iii) (+2 pts) Prove that formal composition is an associative operation on $\mathbb{F}[x]$ for any field \mathbb{F}.

Problem 5 (3 pts). Let \mathbb{F} be a field.
(i) Show that polynomials of degree 1 in $\mathbb{F}[x]$ form a group under the operation of formal composition.
(ii) In the case $\mathbb{F}=\mathbb{Q}$ or \mathbb{Z}_{p}, show that any automorphism ϕ of the ring $\mathbb{F}[x]$ is given by $\phi(p(x))=p(\alpha x+\beta)$, where $\alpha, \beta \in \mathbb{F}, \alpha \neq 0$.
(iii) In the case $\mathbb{F}=\mathbb{Q}$ or \mathbb{Z}_{p}, prove that the group $\operatorname{Aut}(\mathbb{F}[x])$ of automorphisms of the ring $\mathbb{F}[x]$ is isomorphic to the following subgroup of $G L(2, \mathbb{F})$:

$$
\left\{\left.\left(\begin{array}{ll}
1 & \beta \\
0 & \alpha
\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{F}, \alpha \neq 0\right\} .
$$

