MATH 415–501 Fall 2021

Homework assignment #12

Problem 1. Let $\phi: R \to R'$ be an isomorphism of rings and suppose I is a two-sided ideal in R. Prove that the factor ring R/I is isomorphic to the factor ring $R'/\phi(I)$.

Problem 2 (2 pts). Consider the ring of functions $\mathcal{F}(\mathbb{Z}, \mathbb{R})$. Let I be the set of those functions $h: \mathbb{Z} \to \mathbb{R}$ that are zero everywhere except at finitely many points, i.e., $\mathbb{Z} \setminus h^{-1}(0)$ is a finite set.

- (i) Show that I is an ideal in $\mathcal{F}(\mathbb{Z}, \mathbb{R})$.
- (ii) Show that the ideal I is not maximal.

Problem 3 (2 pts). Let \mathbb{F} be a field. Given two polynomials $p(x) = a_0 + a_1x + \cdots + a_nx^n$ and $q(x) = b_0 + b_1x + \cdots + b_mx^m$ in $\mathbb{F}[x]$, the formal composition $p \circ q$ is a polynomial given by $(p \circ q)(x) = a_0 + a_1q(x) + a_2(q(x))^2 + \cdots + a_n(q(x))^n$.

- (i) Let $q \in \mathbb{F}[x]$. Show that the map $\phi_q : \mathbb{F}[x] \to \mathbb{F}[x]$ given by $\phi_q(p) = p \circ q$ is a homomorphism of rings.
- (ii) In the case $\mathbb{F} = \mathbb{Q}$ or \mathbb{Z}_p , show that any homomorphism of the ring $\mathbb{F}[x]$ to itself is either identically zero or of the form ϕ_q for some $q \in \mathbb{F}[x]$.

Problem 4 (2 pts). Let \mathbb{F} be a field. For any polynomial $p(x) = a_0 + a_1 x + \cdots + a_n x^n$ in $\mathbb{F}[x]$ we define a function $f_p : \mathbb{F} \to \mathbb{F}$ by $f_p(c) = a_0 + a_1 c + \cdots + a_n c^n$ for all $c \in \mathbb{F}$.

- (i) Show that $f_{p \circ q} = f_p \circ f_q$ for all $p, q \in \mathbb{F}[x]$, where $p \circ q$ is the formal composition of polynomials and $f_p \circ f_q$ is the usual composition of functions.
- (ii) Prove that formal composition is an associative operation on $\mathbb{F}[x]$ in the case \mathbb{F} is infinite. [Hint: use the fact that $p \mapsto f_p$ is a one-to-one map in the case \mathbb{F} is infinite.]
- (iii) (+2 pts) Prove that formal composition is an associative operation on $\mathbb{F}[x]$ for any field \mathbb{F} .

Problem 5 (3 pts). Let \mathbb{F} be a field.

- (i) Show that polynomials of degree 1 in $\mathbb{F}[x]$ form a group under the operation of formal composition.
- (ii) In the case $\mathbb{F} = \mathbb{Q}$ or \mathbb{Z}_p , show that any automorphism ϕ of the ring $\mathbb{F}[x]$ is given by $\phi(p(x)) = p(\alpha x + \beta)$, where $\alpha, \beta \in \mathbb{F}$, $\alpha \neq 0$.
- (iii) In the case $\mathbb{F} = \mathbb{Q}$ or \mathbb{Z}_p , prove that the group $\operatorname{Aut}(\mathbb{F}[x])$ of automorphisms of the ring $\mathbb{F}[x]$ is isomorphic to the following subgroup of $GL(2,\mathbb{F})$:

$$\left\{ \begin{pmatrix} 1 & \beta \\ 0 & \alpha \end{pmatrix} \mid \alpha, \beta \in \mathbb{F}, \ \alpha \neq 0 \right\}.$$