Homework assignment \#2

Problem 1. Define a binary operation $*$ on \mathbb{R} such that the function $\phi(x)=1-x, x \in \mathbb{R}$ is an isomorphism of the binary structure (\mathbb{R}, \cdot) with $(\mathbb{R}, *)$. Use it to show that " $x \cdot 0=0$ for all $x \in \mathbb{R}$ " is not a structural property of (\mathbb{R}, \cdot).

Problem 2. Consider the following binary operations on the set $S=G L(n, \mathbb{R})$ of invertible $n \times n$ matrices with real entries: right division $A /{ }_{r} B=A B^{-1}$ and left division $A / \ell B=B^{-1} A$. Prove that the binary structures $(S, / r)$ and $(S, / \ell)$ are isomorphic.

Problem 3. There are 16 different binary operations on the set $S=\{a, b\}$. How many non-isomorphic binary structures are there? Give one example from each isomorphy class (use the Cayley tables).

Problem 4. Given an integer $n>0$, let $n \mathbb{Z}=\{n x \mid x \in \mathbb{Z}\}$ be the set of all integers divisible by n. Prove that $(n \mathbb{Z},+)$ is a group and that it is isomorphic to $(\mathbb{Z},+)$.

Problem 5. Let $S=\mathbb{R} \backslash\{-1\}$ and define a binary operation $*$ on S by $x * y=x+y+x y$. Prove that $(S, *)$ is a group.

Problem 6. Let $(G, *)$ be a group. Suppose that $g * g=e$ for all $g \in G$, where e is the identity element. Prove that the group is abelian.

Problem 7. Let $(G, *)$ be a finite group. Suppose that $g * g \neq e$ for all $g \neq e$, where e is the identity element. Prove that the number of elements in G is odd.

Problem 8. Suppose $(S, *)$ is a group and define a binary operation \bullet on S by $x \bullet y=y * x$. Prove that (S, \bullet) is a group and that it is isomorphic to $(S, *)$.

Problem 9. A square matrix A with real entries is called orthogonal if $A^{T}=A^{-1}$. Prove that all $n \times n$ orthogonal matrices form a group under matrix multiplication.

Problem 10. A square matrix is called unipotent if it is upper-triangular and all diagonal entries are equal to 1 . Prove that all $n \times n$ unipotent matrices with real entries form a group under matrix multiplication.

