Homework assignment \#9

Problem 1 (2 pts). Let \mathbb{F} be a field.
(i) Suppose x_{1} and x_{2} are two different elements of \mathbb{F}. Construct a polynomial $p \in \mathbb{F}[x]$ of degree 1 such that $p\left(x_{1}\right)=1$ and $p\left(x_{2}\right)=0$.
(ii) Suppose $x_{1}, x_{2}, \ldots, x_{n}(n \geq 2)$ are distinct elements of \mathbb{F}. Construct a polynomial $p \in \mathbb{F}[x]$ of degree $n-1$ such that $p\left(x_{1}\right)=1$ and $p\left(x_{i}\right)=0$ for $2 \leq i \leq n$.
(iii) Suppose $x_{1}, x_{2}, \ldots, x_{n}(n \geq 2)$ are distinct elements of \mathbb{F}. Prove that for any elements $y_{1}, y_{2}, \ldots, y_{n} \in \mathbb{F}$ there exists a polynomial $f \in \mathbb{F}[x]$ of degree at most $n-1$ such that $f\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq n$.

Problem 2 (2 pts). Let \mathbb{F} be a field.
(i) Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are distinct zeros of a polynomial $f \in \mathbb{F}[x]$. Prove that $f(x)$ is divisible by $\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$ without using the Unique Factorization Theorem.
(ii) Prove that any nonzero polynomial $f \in \mathbb{F}[x]$ has at $\operatorname{most} \operatorname{deg}(f)$ distinct zeros.
(iii) Prove that the polynomial in Problem 1(iii) is unique.

Problem 3. Find the partial quotient and the remainder when a polynomial $f(x)=x^{100}$ is divided by $g(x)=x^{11}-1$ (over any field).

Problem 4. Find the remainder when a polynomial $f(x)=x^{9}-3 x^{8}+2 x^{2}-2$ is divided by $g(x)=x^{2}-4 x+3$ (over any field of characteristic different from 2).

Problem 5. Find all prime numbers p such that a polynomial $x^{4}+x^{3}+x^{2}-x+1$ is divisible by $x+2$ in $\mathbb{Z}_{p}[x]$.

Problem 6. Factor a polynomial $f(x)=x^{4}-2 x^{2}-1$ into irreducible factors over the fields \mathbb{R} and \mathbb{C}.

Problem 7. Factor a polynomial $f(x)=2 x^{3}+3 x^{2}+5 x+2$ into irreducible factors over the field \mathbb{Q}.

Problem 8. Factor a polynomial $f(x)=x^{3}-2 x^{2}-4$ into irreducible factors over the fields \mathbb{Z}_{5} and \mathbb{Z}_{7}.

