MATH 415
 Modern Algebra I

Lecture 2:
 Cardinality of a set.

Functions

A function (or map) $f: X \rightarrow Y$ is an assignment: to each $x \in X$ we assign an element $f(x) \in Y$.

Definition. A function $f: X \rightarrow Y$ is injective (or one-to-one) if $f\left(x^{\prime}\right)=f(x) \Longrightarrow x^{\prime}=x$.
The function f is surjective (or onto) if for each $y \in Y$ there exists at least one $x \in X$ such that $f(x)=y$.
Finally, f is bijective if it is both surjective and injective.
Equivalently, if for each $y \in Y$ there is exactly one $x \in X$ such that $f(x)=y$.

Suppose we have two functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$. We say that g is the inverse function of $f\left(\operatorname{denoted} f^{-1}\right)$ if $y=f(x) \Longleftrightarrow g(y)=x$ for all $x \in X$ and $y \in Y$.

Theorem The inverse function f^{-1} exists if and only if f is bijective.

Definition. The composition of functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ is a function from X to Z, denoted $g \circ f$, that is defined by $(g \circ f)(x)=g(f(x)), x \in X$.

$$
X \xrightarrow{f} Y \xrightarrow{g} Z
$$

Properties of compositions:

- If f and g are one-to-one, then $g \circ f$ is also one-to-one.
- If $g \circ f$ is one-to-one, then f is also one-to-one.
- If f and g are onto, then $g \circ f$ is also onto.
- If $g \circ f$ is onto, then g is also onto.
- If f and g are bijective, then $g \circ f$ is also bijective.
- If f and g are invertible, then $g \circ f$ is also invertible and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
- If id ${ }_{Z}$ denotes the identity function on a set Z, then $f \circ \mathrm{id}_{X}=f=\operatorname{id}_{Y} \circ f$ for any function $f: X \rightarrow Y$.
- For any functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$, we have $g=f^{-1}$ if and only if $g \circ f=\operatorname{id}_{X}$ and $f \circ g=\operatorname{id}_{Y}$.

Cardinality of a set

Definition. Given two sets A and B, we say that A is of the same cardinality as B if there exists a bijective function $f: A \rightarrow B$. Notation: $|A|=|B|$.

Theorem The relation "is of the same cardinality as" is an equivalence relation, i.e., it is reflexive $(|A|=|A|$ for any set $A)$, symmetric $(|A|=|B|$ implies $|B|=|A|)$, and transitive $(|A|=|B|$ and $|B|=|C|$ imply $|A|=|C|$).
Proof: The identity map $\operatorname{id}_{A}: A \rightarrow A$ is bijective. If f is a bijection of A onto B, then the inverse map f^{-1} is a bijection of B onto A. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections then the composition $g \circ f$ is a bijection of A onto C.

Countable and uncountable sets

A nonempty set is finite if it is of the same cardinality as $\{1,2, \ldots, n\}=[1, n] \cap \mathbb{N}$ for some $n \in \mathbb{N}$. Otherwise it is infinite.

An infinite set is called countable (or countably infinite) if it is of the same cardinality as \mathbb{N}.
Otherwise it is uncountable (or uncountably infinite).

An infinite set E is countable if it is possible to arrange all elements of E into a single sequence (an infinite list) $x_{1}, x_{2}, x_{3}, \ldots$ The sequence is referred to as an enumeration of E.

Countable sets

- $2 \mathbb{N}$: even natural numbers.

Bijection $f: \mathbb{N} \rightarrow 2 \mathbb{N}$ is given by $f(n)=2 n$.

- $\mathbb{N} \cup\{0\}$: nonnegative integers.

Bijection $f: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}$ is given by $f(n)=n-1$.

- \mathbb{Z} : integers.

Enumeration of all integers: $0,1,-1,2,-2,3,-3, \ldots$ Equivalently, a bijection $f: \mathbb{N} \rightarrow \mathbb{Z}$ is given by $f(n)=n / 2$ if n is even and $f(n)=(1-n) / 2$ if n is odd.

- $E_{1} \cup E_{2}$, where E_{1} is finite and E_{2} is countable.

First we list all elements of E_{1}. Then we append the list of all elements of E_{2}. If E_{1} and E_{2} are not disjoint, we also need to avoid repetitions in the joint list.

Countable sets

- $E_{1} \cup E_{2}$, where E_{1} and E_{2} are countable. Let $x_{1}, x_{2}, x_{3} \ldots$ be an enumeration of E_{1} and $y_{1}, y_{2}, y_{3}, \ldots$ be an enumeration of E_{2}. Then $x_{1}, y_{1}, x_{2}, y_{2}, \ldots$ enumerates the union (maybe with repetitions).
- Infinite set $E_{1} \cup E_{2} \cup \ldots$, where each E_{n} is finite.

First we list all elements of E_{1}. Then we append the list of all elements of E_{2}. Then we append the list of all elements of E_{3}, and so on... (and do not forget to avoid repetitions).

- $\mathbb{N} \times \mathbb{N}$: pairs of natural numbers
- \mathbb{Q} : rational numbers
- Algebraic numbers (roots of nonzero polynomials with integer coefficients).

Theorem (Cantor) The set \mathbb{R} is uncountable.

Proof: It is enough to prove that the interval $(0,1)$ is uncountable. Assume the contrary. Then all numbers from $(0,1)$ can be arranged into an infinite list $x_{1}, x_{2}, x_{3}, \ldots$ Any number $x \in(0,1)$ admits a decimal expansion of the form 0. $d_{1} d_{2} d_{3} \ldots$, where each $d_{i} \in\{0,1, \ldots, 9\}$. In particular, $x_{1}=0 . d_{11} d_{12} d_{13} d_{14} d_{15} \ldots$
$x_{2}=0 . d_{21} d_{22} d_{23} d_{24} d_{25} \ldots$
$x_{3}=0 . d_{31} d_{32} d_{33} d_{34} d_{35} \ldots$
Now for any $n \in \mathbb{N}$ choose a decimal digit \tilde{d}_{n} such that $\tilde{d}_{n} \neq d_{n n}$ and $\tilde{d}_{n} \notin\{0,9\}$. Then $0 . \tilde{d}_{1} \tilde{d}_{2} \tilde{d}_{3} \ldots$ is the decimal expansion of some number $\tilde{x} \in(0,1)$. By construction, it is different from all expansions in the list. Although some real numbers admit two decimal expansions (e.g., $0.50000 \ldots$ and $0.49999 \ldots$), the condition $\tilde{d}_{n} \notin\{0,9\}$ ensures that \tilde{x} is not such a number. Thus \tilde{x} is not listed, a contradiction.

Uncountable sets

- Any interval (a, b) is of the same cardinality as $(0,1)$.
Bijection $f:(0,1) \rightarrow(a, b)$ is given by $f(x)=(b-a) x+a$.
- All intervals of the form (a, b) have the same cardinality.
Follows by transitivity since they are all of the same cardinality as $(0,1)$.
- All intervals of the form (a, ∞) or $(-\infty, a)$ are of the same cardinality as $(0, \infty)$.
Bijection $f:(0, \infty) \rightarrow(a, \infty)$ is given by $f(x)=x+a$. Bijection $f:(0, \infty) \rightarrow(-\infty, a)$ is given by $f(x)=-x+a$.

Uncountable sets

- $(0,1)$ is of the same cardinality as $(1, \infty)$. Bijection $f:(0,1) \rightarrow(1, \infty)$ is given by $f(x)=x^{-1}$.
- $(0, \infty)$ is of the same cardinality as \mathbb{R}. Bijection $f: \mathbb{R} \rightarrow(0, \infty)$ is given by $f(x)=e^{x}$.
- $[0,1]$ is of the same cardinality as $(0,1)$.

Let $x_{1}, x_{2}, x_{3}, \ldots$ be a sequence of distinct points in $(0,1)$, say, $x_{n}=(n+1)^{-1}$ for all $n \in \mathbb{N}$. Then a bijection $f:[0,1] \rightarrow(0,1)$ is defined as follows: $f(0)=x_{1}, f(1)=x_{2}$, $f\left(x_{n}\right)=x_{n+2}$ for all $n \in \mathbb{N}$, and $f(x)=x$ otherwise.

How to compare cardinalities?

Definition. Given two sets A and B, we say that the cardinality of A is less than or equal to the cardinality of B (and write $|A| \preceq|B|$) if the set A is of the same cardinality as some subset of B. An equivalent condition is that there exists an injective function $f: A \rightarrow B$.
We say that the cardinality of A is less than the cardinality of B (and write $|A| \prec|B|$) if $|A| \preceq|B|$ and $|A| \neq|B|$.

Proposition (i) If $|A| \preceq|B|$ and $|B| \preceq|C|$, then $|A| \preceq|C|$. (ii) If $|A| \prec|B|$ and $|B| \prec|C|$, then $|A| \prec|C|$.

Theorem (Schröder-Bernstein) If $|A| \preceq|B|$ and $|B| \preceq|A|$, then $|A|=|B|$.
Hence \preceq (or \prec) is an ordering of cardinalities. Moreover, this ordering is total, i.e., any two cardinalities are comparable.
Theorem For any two sets A and B, we have either $|A| \prec|B|$ or $|B| \prec|A|$ or $|A|=|B|$.

