MATH 415 Modern Algebra I

Lecture 2: Cardinality of a set.

Functions

A **function** (or **map**) $f: X \to Y$ is an assignment: to each $x \in X$ we assign an element $f(x) \in Y$.

Definition. A function $f: X \to Y$ is **injective** (or **one-to-one**) if $f(x') = f(x) \implies x' = x$.

The function f is **surjective** (or **onto**) if for each $y \in Y$ there exists at least one $x \in X$ such that f(x) = y.

Finally, f is **bijective** if it is both surjective and injective. Equivalently, if for each $y \in Y$ there is exactly one $x \in X$ such that f(x) = y.

Suppose we have two functions $f: X \to Y$ and $g: Y \to X$. We say that g is the **inverse function** of f (denoted f^{-1}) if $y = f(x) \iff g(y) = x$ for all $x \in X$ and $y \in Y$.

Theorem The inverse function f^{-1} exists if and only if f is bijective.

Definition. The **composition** of functions $f: X \to Y$ and $g: Y \to Z$ is a function from X to Z, denoted $g \circ f$, that is defined by $(g \circ f)(x) = g(f(x))$, $x \in X$.

$$X \stackrel{f}{\rightarrow} Y \stackrel{g}{\rightarrow} Z$$

Properties of compositions:

- If f and g are one-to-one, then $g \circ f$ is also one-to-one.
- If $g \circ f$ is one-to-one, then f is also one-to-one.
- If f and g are onto, then $g \circ f$ is also onto.
- If $g \circ f$ is onto, then g is also onto.
- If f and g are bijective, then $g \circ f$ is also bijective.
- If f and g are invertible, then $g \circ f$ is also invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- If id_Z denotes the identity function on a set Z, then $f \circ id_X = f = id_Y \circ f$ for any function $f : X \to Y$.
- For any functions $f: X \to Y$ and $g: Y \to X$, we have $g = f^{-1}$ if and only if $g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_Y$.

Cardinality of a set

Definition. Given two sets A and B, we say that A is of the same **cardinality** as B if there exists a bijective function $f: A \rightarrow B$. Notation: |A| = |B|.

Theorem The relation "is of the same cardinality as" is an equivalence relation, i.e., it is reflexive (|A| = |A| for any set A), symmetric (|A| = |B| implies |B| = |A|), and transitive (|A| = |B| and |B| = |C| imply |A| = |C|).

Proof: The identity map $\mathrm{id}_A:A\to A$ is bijective. If f is a bijection of A onto B, then the inverse map f^{-1} is a bijection of B onto A. If $f:A\to B$ and $g:B\to C$ are bijections then the composition $g\circ f$ is a bijection of A onto C.

Countable and uncountable sets

A nonempty set is **finite** if it is of the same cardinality as $\{1, 2, ..., n\} = [1, n] \cap \mathbb{N}$ for some $n \in \mathbb{N}$. Otherwise it is **infinite**.

An infinite set is called **countable** (or **countably infinite**) if it is of the same cardinality as \mathbb{N} . Otherwise it is **uncountable** (or **uncountably infinite**).

An infinite set E is countable if it is possible to arrange all elements of E into a single sequence (an infinite list) x_1, x_2, x_3, \ldots The sequence is referred to as an **enumeration** of E.

Countable sets

• 2N: even natural numbers.

Bijection $f: \mathbb{N} \to 2\mathbb{N}$ is given by f(n) = 2n.

• $\mathbb{N} \cup \{0\}$: nonnegative integers.

Bijection $f: \mathbb{N} \to \mathbb{N} \cup \{0\}$ is given by f(n) = n - 1.

• \mathbb{Z} : integers.

Enumeration of all integers: 0, 1, -1, 2, -2, 3, -3, ...Equivalently, a bijection $f: \mathbb{N} \to \mathbb{Z}$ is given by f(n) = n/2 if n is even and f(n) = (1-n)/2 if n is odd.

• $E_1 \cup E_2$, where E_1 is finite and E_2 is countable.

First we list all elements of E_1 . Then we append the list of all elements of E_2 . If E_1 and E_2 are not disjoint, we also need to avoid repetitions in the joint list.

Countable sets

• $E_1 \cup E_2$, where E_1 and E_2 are countable.

Let $x_1, x_2, x_3...$ be an enumeration of E_1 and $y_1, y_2, y_3,...$ be an enumeration of E_2 . Then $x_1, y_1, x_2, y_2,...$ enumerates the union (maybe with repetitions).

• Infinite set $E_1 \cup E_2 \cup \ldots$, where each E_n is finite.

First we list all elements of E_1 . Then we append the list of all elements of E_2 . Then we append the list of all elements of E_3 , and so on... (and do not forget to avoid repetitions).

- $\mathbb{N} \times \mathbb{N}$: pairs of natural numbers
- Q: rational numbers
- Algebraic numbers (roots of nonzero polynomials with integer coefficients).

Theorem (Cantor) The set \mathbb{R} is uncountable.

Proof: It is enough to prove that the interval (0,1) is uncountable. Assume the contrary. Then all numbers from (0,1) can be arranged into an infinite list x_1, x_2, x_3, \ldots Any number $x \in (0,1)$ admits a decimal expansion of the form $0.d_1d_2d_3\ldots$, where each $d_i \in \{0,1,\ldots,9\}$. In particular,

$$x_1 = 0.\frac{d_{11}}{d_{12}}d_{13}d_{14}d_{15}...$$

 $x_2 = 0.\frac{d_{21}}{d_{22}}d_{23}d_{24}d_{25}...$
 $x_3 = 0.\frac{d_{31}}{d_{32}}d_{33}d_{34}d_{35}...$

Now for any $n \in \mathbb{N}$ choose a decimal digit d_n such that $\tilde{d}_n \neq d_{nn}$ and $\tilde{d}_n \notin \{0,9\}$. Then $0.\tilde{d}_1\tilde{d}_2\tilde{d}_3\dots$ is the decimal expansion of some number $\tilde{x} \in (0,1)$. By construction, it is different from all expansions in the list. Although some real numbers admit two decimal expansions (e.g., $0.50000\dots$ and $0.49999\dots$), the condition $\tilde{d}_n \notin \{0,9\}$ ensures that \tilde{x} is not such a number. Thus \tilde{x} is not listed, a contradiction.

Uncountable sets

• Any interval (a, b) is of the same cardinality as (0, 1).

Bijection $f:(0,1)\to(a,b)$ is given by f(x)=(b-a)x+a.

• All intervals of the form (a, b) have the same cardinality.

Follows by transitivity since they are all of the same cardinality as (0,1).

• All intervals of the form (a, ∞) or $(-\infty, a)$ are of the same cardinality as $(0, \infty)$.

Bijection $f:(0,\infty)\to(a,\infty)$ is given by f(x)=x+a. Bijection $f:(0,\infty)\to(-\infty,a)$ is given by f(x)=-x+a.

Uncountable sets

- (0,1) is of the same cardinality as $(1,\infty)$. Bijection $f:(0,1)\to(1,\infty)$ is given by $f(x)=x^{-1}$.
- $(0, \infty)$ is of the same cardinality as \mathbb{R} . Bijection $f : \mathbb{R} \to (0, \infty)$ is given by $f(x) = e^x$.
 - [0,1] is of the same cardinality as (0,1).

Let x_1, x_2, x_3, \ldots be a sequence of distinct points in (0,1), say, $x_n = (n+1)^{-1}$ for all $n \in \mathbb{N}$. Then a bijection $f: [0,1] \to (0,1)$ is defined as follows: $f(0) = x_1$, $f(1) = x_2$, $f(x_n) = x_{n+2}$ for all $n \in \mathbb{N}$, and f(x) = x otherwise.

How to compare cardinalities?

Definition. Given two sets A and B, we say that the cardinality of A is **less than or equal to** the cardinality of B (and write $|A| \leq |B|$) if the set A is of the same cardinality as some subset of B. An equivalent condition is that there exists an injective function $f: A \to B$.

We say that the cardinality of A is **less than** the cardinality of B (and write $|A| \prec |B|$) if $|A| \leq |B|$ and $|A| \neq |B|$.

Proposition (i) If $|A| \leq |B|$ and $|B| \leq |C|$, then $|A| \leq |C|$. **(ii)** If $|A| \prec |B|$ and $|B| \prec |C|$, then $|A| \prec |C|$.

Theorem (Schröder-Bernstein) If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

Hence \leq (or \prec) is an ordering of cardinalities. Moreover, this ordering is **total**, i.e., any two cardinalities are comparable.

Theorem For any two sets A and B, we have either $|A| \prec |B|$ or $|B| \prec |A|$ or |A| = |B|.