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Lecture 4:
Isomorphism of binary structures.
Definition of a group.



Binary operations

Definition. A binary operation % on a nonempty
set S is simply a function x: S xS — S.

The usual notation for the element x(x, y) is x x y.

The pair (S, *) is called a binary algebraic
structure.
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“Structures are the weapons of the mathematician.’
Nicholas Bourbaki



Isomorphism of binary structures

Definition. A function f : S; — S, is called an
isomorphism of binary structures (S;, *) and

(S, ) if it is bijective and f(x*xy) = f(x) e f(y)
for all x,y € 5.

Two binary structures (51, %) and (S,, @) are called
isomorphic if there is an isomorphism f : 5; — 5.

The word “isomorphism” applies when two complex structures
can be mapped onto each other, in such a way that to each
part of one structure there is a corresponding part in the other
structure, where ‘corresponding” means that the two parts
play similar roles in their respective structures.

Douglas Hofstadter



Alternative terminology

General maps

one-to-one .............. .. injective
ONtO . ..o surjective
one-to-oneandonto...................... bijective

Maps preserving a structure

any Map. . ...t homomorphism
one-to-one..............c.oiiiiii... monomorphism
ONtO . ..ot epimorphism
one-to-oneandonto.................. isomorphism

Self-maps preserving a structure
any Map ......oouiiiiiiiiiiiinn, endomorphism
one-to-oneandonto................ automorphism



Isomorphism of binary structures

Theorem Isomorphy is an equivalence relation on
binary structures.

Proof. We need to check three conditions.

Reflexivity:

For any binary operation * on a set S, the identity map
ids: S — S is an automorphism of the binary structure (S, x).
Symmetry:

Suppose (S1,*) and (S, ) are binary structures and

f: S5 — S, is an isomorphism. Then the inverse map
f~1:S, — S is also an isomorphism.

Transitivity:

Suppose (51, %), (S2,®) and (Ss,*) are binary structures.
If f:5 — S, and h: S, — S3 are isomorphisms then the
composition ho f : S; — S3 is also an isomorphism.



Examples of isomorphic binary structures

o (Z,+) and (2Z,+).
An isomorphism ¢ : Z — 27 is given by ¢(x) = 2x.

e (R,+) and (RT,").

An isomorphism ¢ : R — R™ is given by
d(x) = €. Indeed, e =¢e*- e forall x,y € R.

e Union and intersection of sets.

P(X) is a set of all subsets of some set X. An
isomorphism between binary structures (P,U) and
(P,N) is given by ¢(A) = X \ A. Indeed,

X\ (AUB) = (X\ A)N(X\ B) forall A,BC X.



Non-isomorphic binary structures

A property of a binary operation is called structural if it is
preserved under isomorphisms. A usual way to prove that two
binary structures are not isomorphic is to identify a structural
property that is featured by one of them but not by the other.

Structural properties are to be worded properly. For example,
the following property of (R,-) is not structural:

x-0=0 forall xeR.

However it can be reformulated as a structural property:
there exists z € R such that x-z =z for all x € R.

This structural property shows, for example, that the binary
structure (R, -) is not isomorphic to (RT,-) or to (R, +).

The simplest structural characteristic of a binary structure is
the cardinality of the underlying set.



Useful (structural) properties of binary operations
Suppose (S, ) is a binary structure.

e Commutativity:
gxh=hxg forall g,heSs.

e Associativity:
(gxh)xk=g=x(hxk) forall g,h keS.

e Existence of the identity element:
there exists an element e € S such that exg=gxe=g
forall g€ S.

e Existence of the inverse element:
for any g € S there exists an element h € S such that
g *xh=hxg=e (where e is the identity element).

e Cancellation:
gxh, = gxhy implies hy = h, and h;xg = hyxg implies
hy = hy forall g,hy, h, €8S.



Groups

Definition. A group is a binary structure (G,x*) that satisfies
the following axioms:

(GO: closure)

for all elements g and h of G, g* h is an element of G;
(G1: associativity)

(gxh)yxk=g=x(hxk) forall g,h ke G,

(G2: existence of identity)

there exists an element e € G, called the identity (or unit)
of G, such that exg=gxe=g forall g e G;

(G3: existence of inverse)

for every g € G there exists an element h € G, called the
inverse of g, such that gxh=hxg =ce.

The group (G, ) is said to be commutative (or abelian) if
it satisfies an additional axiom:

(G4: commutativity) gxh=hxg forall g,heG.



Basic examples. e Real numbers R with addition.
(G0) x,y e R = x+yeR

(Gl) (x+y)+z=x+(y+ 2)

(G2) the identity elementis0as x+0=0+x = x

(G3) the inverse of x is —x as x+ (—x)=(—x)+x=0
(G4) x+y=y+x

e Nonzero real numbers R\ {0} with
multiplication.

(GO)x#0 and y 240 = xy #0

(G1) (xy)z = x(y2)

(G2) the identity element is 1 as x1 = 1x = x
(G3) the inverse of x is x 1 as xx 1 =x"x=1
(G4) xy = yx



The two basic examples give rise to two kinds of notation for a
general group (G, *).

Multiplicative notation: We think of the group operation x
as some kind of multiplication, namely,

e ax b is denoted ab,

e the identity element is denoted 1,

e the inverse of g is denoted g .

Additive notation: We think of the group operation x as
some kind of addition, namely,

e ax b is denoted a-+ b,
e the identity element is denoted 0,
e the inverse of g is denoted —g.

Remarks. Default notation is multiplicative (but the identity
element may be denoted e or id or 1¢). The additive
notation may be used only for commutative groups.



