MATH 415 Modern Algebra I

Lecture 4: Isomorphism of binary structures. Definition of a group.

Binary operations

Definition. A **binary operation** * on a nonempty set *S* is simply a function $*: S \times S \rightarrow S$.

The usual notation for the element *(x, y) is x * y.

The pair (S, *) is called a **binary algebraic** structure.

"Structures are the weapons of the mathematician." Nicholas Bourbaki

Isomorphism of binary structures

Definition. A function $f : S_1 \to S_2$ is called an isomorphism of binary structures $(S_1, *)$ and (S_2, \bullet) if it is bijective and $f(x * y) = f(x) \bullet f(y)$ for all $x, y \in S_1$.

Two binary structures $(S_1, *)$ and (S_2, \bullet) are called **isomorphic** if there is an isomorphism $f : S_1 \to S_2$.

The word "isomorphism" applies when two complex structures can be mapped onto each other, in such a way that to each part of one structure there is a corresponding part in the other structure, where "corresponding" means that the two parts play similar roles in their respective structures.

Douglas Hofstadter

Alternative terminology

General maps

one-to-one injective
onto surjective
one-to-one and onto bijective
Maps preserving a structure
any map \ldots homomorphism
$one-to-one\ldots\ldots\ldotsmonomorphism$
onto epimorphism
one-to-one and onto $\ldots \ldots \ldots$ isomorphism
Self-maps preserving a structure
any map endomorphism
one-to-one and onto automorphism

Isomorphism of binary structures

Theorem Isomorphy is an equivalence relation on binary structures.

Proof. We need to check three conditions.

Reflexivity:

For any binary operation * on a set S, the identity map $id_S: S \to S$ is an automorphism of the binary structure (S, *).

Symmetry:

Suppose $(S_1, *)$ and (S_2, \bullet) are binary structures and $f: S_1 \to S_2$ is an isomorphism. Then the inverse map $f^{-1}: S_2 \to S_1$ is also an isomorphism.

Transitivity:

Suppose $(S_1, *)$, (S_2, \bullet) and $(S_3, *)$ are binary structures. If $f : S_1 \to S_2$ and $h : S_2 \to S_3$ are isomorphisms then the composition $h \circ f : S_1 \to S_3$ is also an isomorphism.

Examples of isomorphic binary structures

•
$$(\mathbb{Z},+)$$
 and $(2\mathbb{Z},+)$.

An isomorphism $\phi : \mathbb{Z} \to 2\mathbb{Z}$ is given by $\phi(x) = 2x$.

• $(\mathbb{R},+)$ and (\mathbb{R}^+,\cdot) .

An isomorphism $\phi : \mathbb{R} \to \mathbb{R}^+$ is given by $\phi(x) = e^x$. Indeed, $e^{x+y} = e^x \cdot e^y$ for all $x, y \in \mathbb{R}$.

• Union and intersection of sets.

 $\mathcal{P}(X)$ is a set of all subsets of some set X. An isomorphism between binary structures (\mathcal{P}, \cup) and (\mathcal{P}, \cap) is given by $\phi(A) = X \setminus A$. Indeed, $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$ for all $A, B \subseteq X$.

Non-isomorphic binary structures

A property of a binary operation is called **structural** if it is preserved under isomorphisms. A usual way to prove that two binary structures are not isomorphic is to identify a structural property that is featured by one of them but not by the other.

Structural properties are to be worded properly. For example, the following property of (\mathbb{R}, \cdot) is not structural:

 $x \cdot 0 = 0$ for all $x \in \mathbb{R}$.

However it can be reformulated as a structural property:

there exists $z \in \mathbb{R}$ such that $x \cdot z = z$ for all $x \in \mathbb{R}$.

This structural property shows, for example, that the binary structure (\mathbb{R}, \cdot) is not isomorphic to (\mathbb{R}^+, \cdot) or to $(\mathbb{R}, +)$.

The simplest structural characteristic of a binary structure is the cardinality of the underlying set.

Useful (structural) properties of binary operations

Suppose (S, *) is a binary structure.

• Commutativity:

g * h = h * g for all $g, h \in S$.

• Associativity:

(g * h) * k = g * (h * k) for all $g, h, k \in S$.

• Existence of the identity element: there exists an element $e \in S$ such that e * g = g * e = g for all $g \in S$.

• Existence of the inverse element: for any $g \in S$ there exists an element $h \in S$ such that g * h = h * g = e (where e is the identity element).

• Cancellation:

 $g*h_1 = g*h_2$ implies $h_1 = h_2$ and $h_1*g = h_2*g$ implies $h_1 = h_2$ for all $g, h_1, h_2 \in S$.

Groups

Definition. A **group** is a binary structure (G, *) that satisfies the following axioms:

(G0: closure)

for all elements g and h of G, g * h is an element of G;

(G1: associativity)

(g * h) * k = g * (h * k) for all $g, h, k \in G$;

(G2: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of G, such that e * g = g * e = g for all $g \in G$;

(G3: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of g, such that g * h = h * g = e.

The group (G, *) is said to be **commutative** (or **abelian**) if it satisfies an additional axiom:

(G4: commutativity) g * h = h * g for all $g, h \in G$.

Basic examples. • Real numbers \mathbb{R} with addition. (G0) $x, y \in \mathbb{R} \implies x + y \in \mathbb{R}$ (G1) (x + y) + z = x + (y + z)(G2) the identity element is 0 as x + 0 = 0 + x = x(G3) the inverse of x is -x as x + (-x) = (-x) + x = 0(G4) x + y = y + x

 \bullet Nonzero real numbers $\mathbb{R}\setminus\{0\}$ with multiplication.

(G0)
$$x \neq 0$$
 and $y \neq 0 \implies xy \neq 0$
(G1) $(xy)z = x(yz)$
(G2) the identity element is 1 as $x1 = 1x = x$
(G3) the inverse of x is x^{-1} as $xx^{-1} = x^{-1}x = 1$
(G4) $xy = yx$

The two basic examples give rise to two kinds of notation for a general group (G, *).

Multiplicative notation: We think of the group operation * as some kind of multiplication, namely,

- a * b is denoted ab,
- the identity element is denoted 1,
- the inverse of g is denoted g^{-1} .

Additive notation: We think of the group operation * as some kind of addition, namely,

- a * b is denoted a + b,
- the identity element is denoted 0,
- the inverse of g is denoted -g.

Remarks. Default notation is multiplicative (but the identity element may be denoted e or id or 1_G). The additive notation may be used only for commutative groups.