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Lecture 4:
Isomorphism of binary structures.

Definition of a group.



Binary operations

Definition. A binary operation ∗ on a nonempty
set S is simply a function ∗ : S × S → S .

The usual notation for the element ∗(x , y) is x ∗ y .

The pair (S , ∗) is called a binary algebraic

structure.

“Structures are the weapons of the mathematician.”

Nicholas Bourbaki



Isomorphism of binary structures

Definition. A function f : S1 → S2 is called an
isomorphism of binary structures (S1, ∗) and

(S2, •) if it is bijective and f (x ∗ y) = f (x) • f (y)
for all x , y ∈ S1.

Two binary structures (S1, ∗) and (S2, •) are called
isomorphic if there is an isomorphism f : S1 → S2.

The word “isomorphism” applies when two complex structures

can be mapped onto each other, in such a way that to each

part of one structure there is a corresponding part in the other

structure, where “corresponding” means that the two parts

play similar roles in their respective structures.
Douglas Hofstadter



Alternative terminology

General maps

one-to-one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . injective

onto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . surjective
one-to-one and onto . . . . . . . . . . . . . . . . . . . . . . bijective

Maps preserving a structure

any map. . . . . . . . . . . . . . . . . . . . . . . . . . .homomorphism
one-to-one. . . . . . . . . . . . . . . . . . . . . . . . .monomorphism

onto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . epimorphism
one-to-one and onto . . . . . . . . . . . . . . . . . . isomorphism

Self-maps preserving a structure

any map . . . . . . . . . . . . . . . . . . . . . . . . . . . endomorphism
one-to-one and onto . . . . . . . . . . . . . . . . automorphism



Isomorphism of binary structures

Theorem Isomorphy is an equivalence relation on
binary structures.

Proof. We need to check three conditions.

Reflexivity:
For any binary operation ∗ on a set S , the identity map
idS : S → S is an automorphism of the binary structure (S , ∗).

Symmetry:
Suppose (S1, ∗) and (S2, •) are binary structures and
f : S1 → S2 is an isomorphism. Then the inverse map
f −1 : S2 → S1 is also an isomorphism.

Transitivity:
Suppose (S1, ∗), (S2, •) and (S3, ⋆) are binary structures.
If f : S1 → S2 and h : S2 → S3 are isomorphisms then the
composition h ◦ f : S1 → S3 is also an isomorphism.



Examples of isomorphic binary structures

• (Z,+) and (2Z,+).

An isomorphism φ : Z → 2Z is given by φ(x) = 2x .

• (R,+) and (R+, ·).

An isomorphism φ : R → R
+ is given by

φ(x) = ex . Indeed, ex+y = ex · ey for all x , y ∈ R.

• Union and intersection of sets.

P(X ) is a set of all subsets of some set X . An

isomorphism between binary structures (P ,∪) and
(P ,∩) is given by φ(A) = X \ A. Indeed,

X \ (A ∪ B) = (X \ A) ∩ (X \ B) for all A,B ⊆ X .



Non-isomorphic binary structures

A property of a binary operation is called structural if it is
preserved under isomorphisms. A usual way to prove that two
binary structures are not isomorphic is to identify a structural
property that is featured by one of them but not by the other.

Structural properties are to be worded properly. For example,
the following property of (R, ·) is not structural:

x · 0 = 0 for all x ∈ R.

However it can be reformulated as a structural property:

there exists z ∈ R such that x · z = z for all x ∈ R.

This structural property shows, for example, that the binary
structure (R, ·) is not isomorphic to (R+, ·) or to (R,+).

The simplest structural characteristic of a binary structure is
the cardinality of the underlying set.



Useful (structural) properties of binary operations

Suppose (S , ∗) is a binary structure.

• Commutativity:
g ∗ h = h ∗ g for all g , h ∈ S .

• Associativity:
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ S .

• Existence of the identity element:
there exists an element e ∈ S such that e ∗ g = g ∗ e = g

for all g ∈ S .

• Existence of the inverse element:
for any g ∈ S there exists an element h ∈ S such that
g ∗ h = h ∗ g = e (where e is the identity element).

• Cancellation:
g ∗ h1 = g ∗ h2 implies h1 = h2 and h1 ∗ g = h2 ∗ g implies
h1 = h2 for all g , h1, h2 ∈ S .



Groups

Definition. A group is a binary structure (G , ∗) that satisfies
the following axioms:

(G0: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G1: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G2: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G3: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or abelian) if
it satisfies an additional axiom:

(G4: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Basic examples. • Real numbers R with addition.

(G0) x , y ∈ R =⇒ x + y ∈ R

(G1) (x + y ) + z = x + (y + z)

(G2) the identity element is 0 as x + 0 = 0 + x = x

(G3) the inverse of x is −x as x + (−x) = (−x) + x = 0

(G4) x + y = y + x

• Nonzero real numbers R \ {0} with

multiplication.

(G0) x 6= 0 and y 6= 0 =⇒ xy 6= 0

(G1) (xy )z = x(yz)

(G2) the identity element is 1 as x1 = 1x = x

(G3) the inverse of x is x−1 as xx−1 = x−1x = 1

(G4) xy = yx



The two basic examples give rise to two kinds of notation for a
general group (G , ∗).

Multiplicative notation: We think of the group operation ∗
as some kind of multiplication, namely,

• a ∗ b is denoted ab,

• the identity element is denoted 1,

• the inverse of g is denoted g−1.

Additive notation: We think of the group operation ∗ as
some kind of addition, namely,

• a ∗ b is denoted a + b,

• the identity element is denoted 0,

• the inverse of g is denoted −g .

Remarks. Default notation is multiplicative (but the identity
element may be denoted e or id or 1G ). The additive
notation may be used only for commutative groups.


