MATH 415 Modern Algebra I

Lecture 5: Examples and properties of groups.

Groups

Definition. A **group** is a binary structure (G, *) that satisfies the following axioms:

(G0: closure)

for all elements g and h of G, g * h is an element of G;

(G1: associativity)

(g * h) * k = g * (h * k) for all $g, h, k \in G$;

(G2: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of G, such that e * g = g * e = g for all $g \in G$;

(G3: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of g, such that g * h = h * g = e.

The group (G, *) is said to be **commutative** (or **abelian**) if it satisfies an additional axiom:

(G4: commutativity) g * h = h * g for all $g, h \in G$.

Examples: numbers

- Real numbers ${\mathbb R}$ with addition.
- \bullet Nonzero real numbers $\mathbb{R}\setminus\{0\}$ with multiplication.
- Integers \mathbb{Z} with addition.

(G0) $a, b \in \mathbb{Z} \implies a+b \in \mathbb{Z}$ (G1) (a+b)+c = a + (b+c)(G2) the identity element is 0 as a+0=0+a=a and $0 \in \mathbb{Z}$ (G3) the inverse of $a \in \mathbb{Z}$ is -a as a + (-a) = (-a) + a = 0 and $-a \in \mathbb{Z}$ (G4) a+b=b+a The two basic examples give rise to two kinds of notation for a general group (G, *).

Multiplicative notation: We think of the group operation * as some kind of multiplication, namely,

- a * b is denoted ab,
- the identity element is denoted 1,
- the inverse of g is denoted g^{-1} .

Additive notation: We think of the group operation * as some kind of addition, namely,

- a * b is denoted a + b,
- the identity element is denoted 0,
- the inverse of g is denoted -g.

Remarks. Default notation is multiplicative (but the identity element may be denoted e or id or 1_G). The additive notation may be used only for commutative groups.

Example: addition modulo n

Given a natural number
$$n$$
, let $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}.$

A binary operation $+_n$ (addition modulo n) on \mathbb{Z}_n is defined for any $x, y \in \mathbb{Z}_n$ by

$$x +_n y = \begin{cases} x + y & \text{if } x + y < n, \\ x + y - n & \text{if } x + y \ge n. \end{cases}$$

Now let *n* be a positive real number and $\mathbb{R}_n = [0, n)$. The binary operation $+_n$ on \mathbb{R}_n is defined by the same formula as above.

Theorem Each $(\mathbb{Z}_n, +_n)$ and each $(\mathbb{R}_n, +_n)$ is a group. All groups $(\mathbb{R}_n, +_n)$ are isomorphic.

Example: invertible functions

• Symmetric group S(X): all bijective functions $\pi: X \to X$ with composition (= multiplication).

(G0) π and σ are bijective functions from the set X to itself \implies so is $\pi\sigma$

(G1) $(\pi\sigma)\tau$ and $\pi(\sigma\tau)$ applied to $x \in X$ both yield $\pi(\sigma(\tau(x)))$

(G2) the identity element is the identity function id_X as $\pi id_X = id_X \pi = \pi$

(G3) the inverse function π^{-1} satisfies $\pi\pi^{-1} = \pi^{-1}\pi = \operatorname{id}_X$ (conversely, if $\pi\sigma = \sigma\pi = \operatorname{id}_X$, then $\sigma = \pi^{-1}$)

(G4) fails if the set has more than 2 elements

Example: set theory

• All subsets of a set X with the operation of symmetric difference: $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

 $(\mathsf{G0}) \ A, B \subseteq X \implies A \triangle B \subseteq X.$

(G1) $(A \triangle B) \triangle C = A \triangle (B \triangle C)$ consists of those elements of X that belong to an odd number of sets A, B, C (either to just one of them or to all three)

(G2) the identity element is the empty set \emptyset since $A \triangle \emptyset = \emptyset \triangle A = A$ for any set A

(G3) the inverse of a set $A \subseteq X$ is A itself: $A \triangle A = \emptyset$ (G4) $A \triangle B = B \triangle A = (A \cup B) \setminus (A \cap B)$

Example: logic

- Binary logic $\mathcal{L} = \{$ "true", "false" $\}$ with the operation XOR (eXclusive OR): "x XOR y" means "either x or y (but not both)".
- (G0) "true XOR false" = "false XOR true" = "true", "true XOR true" = "false XOR false" = "false" (G1) "(x XOR y) XOR z" = "x XOR (y XOR z)" (G2) the identity element is "false" (G3) the inverse of $x \in \mathcal{L}$ is x itself (G4) "x XOR y" = "y XOR x"

More examples

• Any vector space V with addition.

Those axioms of the vector space that involve only addition are exactly axioms of the commutative group.

• Trivial group (G, *), where $G = \{e\}$ and e * e = e.

Verification of all axioms is straightforward.

• Positive real numbers with the operation x * y = 2xy. (G0) $x, y > 0 \implies 2xy > 0$ (G1) (x * y) * z = x * (y * z) = 4xyz(G2) the identity element is $\frac{1}{2}$ as x * e = x means 2ex = x(G3) the inverse of x is $\frac{1}{4x}$ as $x * y = \frac{1}{2}$ means 4xy = 1(G4) x * y = y * x = 2xy

Counterexamples

• Real numbers \mathbb{R} with multiplication.

0 has no inverse.

• Positive integers with addition. No identity element.

• Nonnegative integers with addition. No inverse element for positive numbers.

• Irrational numbers with addition. The set is not closed under the operation.

• Integers with subtraction.

The operation is not associative: (a - b) - c = a - (b - c)only if c = 0.

• All subsets of a set X with the operation $A * B = A \cup B$. The operation is associative and commutative, the empty set is the identity element. However there is no inverse for a nonempty set.

Basic properties of groups

• The identity element is unique. Assume that e_1 and e_2 are identity elements. Then $e_1 = e_1e_2 = e_2$.

• The inverse element is unique.

Assume that h_1 and h_2 are inverses of an element g. Then $h_1 = h_1 e = h_1(gh_2) = (h_1g)h_2 = eh_2 = h_2$.

•
$$(ab)^{-1} = b^{-1}a^{-1}$$
.

We need to show that $(ab)(b^{-1}a^{-1}) = (b^{-1}a^{-1})(ab) = e$. Indeed, $(ab)(b^{-1}a^{-1}) = ((ab)b^{-1})a^{-1} = (a(bb^{-1}))a^{-1}$ $= (ae)a^{-1} = aa^{-1} = e$. Similarly, $(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}(ab)) = b^{-1}((a^{-1}a)b) = b^{-1}(eb) = b^{-1}b = e$.

•
$$(a_1a_2...a_n)^{-1} = a_n^{-1}...a_2^{-1}a_1^{-1}.$$

Basic properties of groups

• Cancellation properties: $ab = ac \implies b = c$ and $ba = ca \implies b = c$ for all $a, b, c \in G$. Indeed, $ab = ac \implies a^{-1}(ab) = a^{-1}(ac)$ $\implies (a^{-1}a)b = (a^{-1}a)c \implies eb = ec \implies b = c$. Similarly, $ba = ca \implies (ba)a^{-1} = (ca)a^{-1}$ $\implies b(aa^{-1}) = c(aa^{-1}) \implies be = ce \implies b = c$.

• If hg = g or gh = g for some $g \in G$, then *h* is the identity element.

Indeed, $hg = g \implies hg = eg$. By right cancellation, h = e. Likewise, $gh = g \implies gh = ge$. By left cancellation, h = e.

•
$$gh = e \iff hg = e \iff h = g^{-1}$$
.
 $gh = e \iff gh = gg^{-1} \iff h = g^{-1} \iff hg = g^{-1}g \iff hg = e$