MATH 415
 Modern Algebra I

Lecture 5:
 Examples and properties of groups.

Groups

Definition. A group is a binary structure $(G, *)$ that satisfies the following axioms:
(G0: closure)
for all elements g and h of $G, g * h$ is an element of G;
(G1: associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in G$;
(G2: existence of identity)
there exists an element $e \in G$, called the identity (or unit) of G, such that $e * g=g * e=g$ for all $g \in G$;
(G3: existence of inverse)
for every $g \in G$ there exists an element $h \in G$, called the inverse of g, such that $g * h=h * g=e$.
The group $(G, *)$ is said to be commutative (or abelian) if it satisfies an additional axiom:
(G4: commutativity) $g * h=h * g$ for all $g, h \in G$.

Examples: numbers

- Real numbers \mathbb{R} with addition.
- Nonzero real numbers $\mathbb{R} \backslash\{0\}$ with multiplication.
- Integers \mathbb{Z} with addition.
(G0) $a, b \in \mathbb{Z} \Longrightarrow a+b \in \mathbb{Z}$
(G1) $(a+b)+c=a+(b+c)$
(G2) the identity element is 0 as $a+0=0+a=a$ and $0 \in \mathbb{Z}$
(G3) the inverse of $a \in \mathbb{Z}$ is $-a$ as
$a+(-a)=(-a)+a=0$ and $-a \in \mathbb{Z}$
(G4) $a+b=b+a$

The two basic examples give rise to two kinds of notation for a general group $(G, *)$.

Multiplicative notation: We think of the group operation * as some kind of multiplication, namely,

- $a * b$ is denoted $a b$,
- the identity element is denoted 1 ,
- the inverse of g is denoted g^{-1}.

Additive notation: We think of the group operation $*$ as some kind of addition, namely,

- $a * b$ is denoted $a+b$,
- the identity element is denoted 0 ,
- the inverse of g is denoted $-g$.

Remarks. Default notation is multiplicative (but the identity element may be denoted e or id or 1_{G}). The additive notation may be used only for commutative groups.

Example: addition modulo n

Given a natural number n, let $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$.
A binary operation $+_{n}$ (addition modulo n) on \mathbb{Z}_{n} is defined for any $x, y \in \mathbb{Z}_{n}$ by

$$
x+n y= \begin{cases}x+y & \text { if } x+y<n \\ x+y-n & \text { if } x+y \geq n\end{cases}
$$

Now let n be a positive real number and
$\mathbb{R}_{n}=[0, n)$. The binary operation $+_{n}$ on \mathbb{R}_{n} is defined by the same formula as above.

Theorem Each $\left(\mathbb{Z}_{n},+_{n}\right)$ and each $\left(\mathbb{R}_{n},+_{n}\right)$ is a group. All groups $\left(\mathbb{R}_{n},+_{n}\right)$ are isomorphic.

Example: invertible functions

- Symmetric group $S(X)$: all bijective functions $\pi: X \rightarrow X$ with composition ($=$ multiplication).
(G0) π and σ are bijective functions from the set X to itself \Longrightarrow so is $\pi \sigma$
(G1) $(\pi \sigma) \tau$ and $\pi(\sigma \tau)$ applied to $x \in X$ both yield $\pi(\sigma(\tau(x)))$
(G2) the identity element is the identity function id_{X} as $\pi \mathrm{id}_{X}=\operatorname{id}_{X} \pi=\pi$
(G3) the inverse function π^{-1} satisfies $\pi \pi^{-1}=\pi^{-1} \pi=\mathrm{id}_{X}$ (conversely, if $\pi \sigma=\sigma \pi=\mathrm{id}_{X}$, then $\sigma=\pi^{-1}$)
(G4) fails if the set has more than 2 elements

Example: set theory

- All subsets of a set X with the operation of symmetric difference: $A \triangle B=(A \backslash B) \cup(B \backslash A)$.
(G0) $A, B \subseteq X \Longrightarrow A \triangle B \subseteq X$.
(G1) $(A \triangle B) \triangle C=A \triangle(B \triangle C)$ consists of those elements of X that belong to an odd number of sets A, B, C (either to just one of them or to all three)
(G2) the identity element is the empty set \emptyset since $A \triangle \emptyset=\emptyset \triangle A=A$ for any set A
(G3) the inverse of a set $A \subseteq X$ is A itself: $A \triangle A=\emptyset$
(G4) $A \triangle B=B \triangle A=(A \cup B) \backslash(A \cap B)$

Example: logic

- Binary logic $\mathcal{L}=\{$ "true", "false" $\}$ with the operation XOR (eXclusive OR): "x XOR y " means "either x or y (but not both)".
(GO) "true XOR false" = "false XOR true" = "true", "true XOR true" $=$ "false XOR false" $=$ "false"
(G1) " $(x$ XOR y) XOR $z "=" x \operatorname{XOR}(y \operatorname{XOR} z) "$
(G2) the identity element is "false"
(G3) the inverse of $x \in \mathcal{L}$ is x itself
(G4) " x XOR y " $=" y$ XOR x "

More examples

- Any vector space V with addition.

Those axioms of the vector space that involve only addition are exactly axioms of the commutative group.

- Trivial group $(G, *)$, where $G=\{e\}$ and $e * e=e$.
Verification of all axioms is straightforward.
- Positive real numbers with the operation $x * y=2 x y$.
(G0) $x, y>0 \Longrightarrow 2 x y>0$
(G1) $(x * y) * z=x *(y * z)=4 x y z$
(G2) the identity element is $\frac{1}{2}$ as $x * e=x$ means $2 e x=x$
(G3) the inverse of x is $\frac{1}{4 x}$ as $x * y=\frac{1}{2}$ means $4 x y=1$
(G4) $x * y=y * x=2 x y$

Counterexamples

- Real numbers \mathbb{R} with multiplication.

0 has no inverse.

- Positive integers with addition.

No identity element.

- Nonnegative integers with addition.

No inverse element for positive numbers.

- Irrational numbers with addition.

The set is not closed under the operation.

- Integers with subtraction.

The operation is not associative: $(a-b)-c=a-(b-c)$ only if $c=0$.

- All subsets of a set X with the operation $A * B=A \cup B$. The operation is associative and commutative, the empty set is the identity element. However there is no inverse for a nonempty set.

Basic properties of groups

- The identity element is unique.

Assume that e_{1} and e_{2} are identity elements. Then $e_{1}=e_{1} e_{2}=e_{2}$.

- The inverse element is unique.

Assume that h_{1} and h_{2} are inverses of an element g. Then $h_{1}=h_{1} e=h_{1}\left(g h_{2}\right)=\left(h_{1} g\right) h_{2}=e h_{2}=h_{2}$.

- $(a b)^{-1}=b^{-1} a^{-1}$.

We need to show that $(a b)\left(b^{-1} a^{-1}\right)=\left(b^{-1} a^{-1}\right)(a b)=e$.
Indeed, $(a b)\left(b^{-1} a^{-1}\right)=\left((a b) b^{-1}\right) a^{-1}=\left(a\left(b b^{-1}\right)\right) a^{-1}$
$=(a e) a^{-1}=a a^{-1}=e$. Similarly, $\left(b^{-1} a^{-1}\right)(a b)=$
$b^{-1}\left(a^{-1}(a b)\right)=b^{-1}\left(\left(a^{-1} a\right) b\right)=b^{-1}(e b)=b^{-1} b=e$.

- $\left(a_{1} a_{2} \ldots a_{n}\right)^{-1}=a_{n}^{-1} \ldots a_{2}^{-1} a_{1}^{-1}$.

Basic properties of groups

- Cancellation properties: $a b=a c \Longrightarrow b=c$ and $b a=c a \Longrightarrow b=c$ for all $a, b, c \in G$. Indeed, $a b=a c \Longrightarrow a^{-1}(a b)=a^{-1}(a c)$
$\Longrightarrow\left(a^{-1} a\right) b=\left(a^{-1} a\right) c \Longrightarrow e b=e c \Longrightarrow b=c$.
Similarly, $b a=c a \Longrightarrow(b a) a^{-1}=(c a) a^{-1}$
$\Longrightarrow b\left(a a^{-1}\right)=c\left(a a^{-1}\right) \Longrightarrow b e=c e \Longrightarrow b=c$.
- If $h g=g$ or $g h=g$ for some $g \in G$, then h is the identity element.
Indeed, $h g=g \Longrightarrow h g=e g$. By right cancellation, $h=e$. Likewise, $g h=g \Longrightarrow g h=g e$. By left cancellation, $h=e$.
- $g h=e \Longleftrightarrow h g=e \Longleftrightarrow h=g^{-1}$.
$g h=e \Longleftrightarrow g h=g g^{-1} \Longleftrightarrow h=g^{-1} \Longleftrightarrow h g=g^{-1} g \Longleftrightarrow h g=e$

