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Lecture 5:
Examples and properties of groups.



Groups

Definition. A group is a binary structure (G , ∗) that satisfies
the following axioms:

(G0: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G1: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G2: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G3: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or abelian) if
it satisfies an additional axiom:

(G4: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Examples: numbers

• Real numbers R with addition.

• Nonzero real numbers R \ {0} with
multiplication.

• Integers Z with addition.

(G0) a, b ∈ Z =⇒ a + b ∈ Z

(G1) (a + b) + c = a + (b + c)

(G2) the identity element is 0 as a + 0 = 0 + a = a and
0 ∈ Z

(G3) the inverse of a ∈ Z is −a as
a + (−a) = (−a) + a = 0 and −a ∈ Z

(G4) a + b = b + a



The two basic examples give rise to two kinds of notation for a
general group (G , ∗).

Multiplicative notation: We think of the group operation ∗
as some kind of multiplication, namely,

• a ∗ b is denoted ab,

• the identity element is denoted 1,

• the inverse of g is denoted g−1.

Additive notation: We think of the group operation ∗ as
some kind of addition, namely,

• a ∗ b is denoted a + b,

• the identity element is denoted 0,

• the inverse of g is denoted −g .

Remarks. Default notation is multiplicative (but the identity
element may be denoted e or id or 1G ). The additive
notation may be used only for commutative groups.



Example: addition modulo n

Given a natural number n, let
Zn = {0, 1, 2, . . . , n− 1}.

A binary operation +n (addition modulo n) on Zn

is defined for any x , y ∈ Zn by

x +n y =

{

x + y if x + y < n,

x + y − n if x + y ≥ n.

Now let n be a positive real number and

Rn = [0, n). The binary operation +n on Rn is
defined by the same formula as above.

Theorem Each (Zn,+n) and each (Rn,+n) is a
group. All groups (Rn,+n) are isomorphic.



Example: invertible functions

• Symmetric group S(X ): all bijective functions

π : X → X with composition (= multiplication).

(G0) π and σ are bijective functions from the set X to itself
=⇒ so is πσ

(G1) (πσ)τ and π(στ) applied to x ∈ X both yield
π(σ(τ(x)))

(G2) the identity element is the identity function idX as
π idX = idX π = π

(G3) the inverse function π
−1 satisfies ππ

−1 = π
−1
π = idX

(conversely, if πσ = σπ = idX , then σ = π
−1)

(G4) fails if the set has more than 2 elements



Example: set theory

• All subsets of a set X with the operation of
symmetric difference: A△B = (A \ B) ∪ (B \ A).

(G0) A,B ⊆ X =⇒ A△B ⊆ X .

(G1) (A△B)△C = A△(B△C ) consists of those elements of
X that belong to an odd number of sets A,B ,C (either to
just one of them or to all three)

(G2) the identity element is the empty set ∅ since
A△∅ = ∅△A = A for any set A

(G3) the inverse of a set A ⊆ X is A itself: A△A = ∅

(G4) A△B = B△A = (A ∪ B) \ (A ∩ B)



Example: logic

• Binary logic L = {“true”, “false”} with the

operation XOR (eXclusive OR): “x XOR y” means
“either x or y (but not both)”.

(G0) “true XOR false” = “false XOR true” = “true”,
“true XOR true” = “false XOR false” = “false”

(G1) “(x XOR y ) XOR z”=“x XOR (y XOR z)”

(G2) the identity element is “false”

(G3) the inverse of x ∈ L is x itself

(G4) “x XOR y”=“y XOR x”



More examples

• Any vector space V with addition.
Those axioms of the vector space that involve only addition
are exactly axioms of the commutative group.

• Trivial group (G , ∗), where G = {e} and
e ∗ e = e.
Verification of all axioms is straightforward.

• Positive real numbers with the operation

x ∗ y = 2xy .

(G0) x , y > 0 =⇒ 2xy > 0
(G1) (x ∗ y ) ∗ z = x ∗ (y ∗ z) = 4xyz
(G2) the identity element is 1

2
as x ∗ e = x means 2ex = x

(G3) the inverse of x is 1

4x
as x ∗ y = 1

2
means 4xy = 1

(G4) x ∗ y = y ∗ x = 2xy



Counterexamples
• Real numbers R with multiplication.
0 has no inverse.

• Positive integers with addition.
No identity element.

• Nonnegative integers with addition.
No inverse element for positive numbers.

• Irrational numbers with addition.
The set is not closed under the operation.

• Integers with subtraction.
The operation is not associative: (a − b)− c = a − (b − c)
only if c = 0.

• All subsets of a set X with the operation A ∗ B = A ∪ B .
The operation is associative and commutative, the empty set
is the identity element. However there is no inverse for a
nonempty set.



Basic properties of groups

• The identity element is unique.
Assume that e1 and e2 are identity elements. Then
e1 = e1e2 = e2.

• The inverse element is unique.
Assume that h1 and h2 are inverses of an element g . Then
h1 = h1e = h1(gh2) = (h1g)h2 = eh2 = h2.

• (ab)−1 = b−1a−1.

We need to show that (ab)(b−1a−1) = (b−1a−1)(ab) = e.

Indeed, (ab)(b−1a−1) =
(

(ab)b−1
)

a−1 =
(

a(bb−1)
)

a−1

= (ae)a−1 = aa−1 = e. Similarly, (b−1a−1)(ab) =
b−1

(

a−1(ab)
)

= b−1
(

(a−1a)b
)

= b−1(eb) = b−1b = e.

• (a1a2 . . . an)
−1 = a−1

n
. . . a−1

2
a−1

1
.



Basic properties of groups

• Cancellation properties: ab = ac =⇒ b = c

and ba = ca =⇒ b = c for all a, b, c ∈ G .

Indeed, ab = ac =⇒ a−1(ab) = a−1(ac)
=⇒ (a−1a)b = (a−1a)c =⇒ eb = ec =⇒ b = c.
Similarly, ba = ca =⇒ (ba)a−1 = (ca)a−1

=⇒ b(aa−1) = c(aa−1) =⇒ be = ce =⇒ b = c.

• If hg = g or gh = g for some g ∈ G , then
h is the identity element.

Indeed, hg = g =⇒ hg = eg . By right cancellation, h = e.
Likewise, gh = g =⇒ gh = ge. By left cancellation, h = e.

• gh = e ⇐⇒ hg = e ⇐⇒ h = g−1.

gh = e ⇐⇒ gh = gg−1 ⇐⇒ h = g−1 ⇐⇒ hg = g−1g ⇐⇒ hg = e


