MATH 415
Modern Algebra |

Lecture 5:
Examples and properties of groups.



Groups

Definition. A group is a binary structure (G,x*) that satisfies
the following axioms:

(GO: closure)

for all elements g and h of G, g* h is an element of G;
(G1: associativity)

(gxh)yxk=g=x(hxk) forall g,h ke G,

(G2: existence of identity)

there exists an element e € G, called the identity (or unit)
of G, such that exg=gxe=g forall g e G;

(G3: existence of inverse)

for every g € G there exists an element h € G, called the
inverse of g, such that gxh=hxg =ce.

The group (G, ) is said to be commutative (or abelian) if
it satisfies an additional axiom:

(G4: commutativity) gxh=hxg forall g,heG.



Examples: numbers

e Real numbers R with addition.

e Nonzero real numbers R\ {0} with
multiplication.

e Integers Z with addition.

(G0) a,beZ — a+beZ

(Gl) (a+b)+c=a+(b+¢)

(G2) the identity elementis0as a+0=0+a=a and
0€Z

(G3) the inverse of a € Z is —a as
at+(—a)=(—-a)+a=0 and —acZ

(G4) a+b=b+a



The two basic examples give rise to two kinds of notation for a
general group (G, *).

Multiplicative notation: We think of the group operation x
as some kind of multiplication, namely,

e ax b is denoted ab,

e the identity element is denoted 1,

e the inverse of g is denoted g .

Additive notation: We think of the group operation x as
some kind of addition, namely,

e ax b is denoted a-+ b,
e the identity element is denoted 0,
e the inverse of g is denoted —g.

Remarks. Default notation is multiplicative (but the identity
element may be denoted e or id or 1¢). The additive
notation may be used only for commutative groups.



Example: addition modulo n

Given a natural number n, let
Z,=14{0,1,2,...,n—1}.

A binary operation 4, (addition modulo n) on Z,
is defined for any x,y € Z, by

X4y if x+y<n,

X+”y:{x+y—n if x+y>n.

Now let n be a positive real number and
R, =[0,n). The binary operation +, on R, is
defined by the same formula as above.

Theorem Each (Z,,+,) and each (R,,+,) is a
group. All groups (R,,+,) are isomorphic.



Example: invertible functions

e Symmetric group S(X): all bijective functions
7 : X — X with composition (= multiplication).

(GO) 7 and o are bijective functions from the set X to itself
=> SO IS TTO

(G1) (wo)7T and m(oT) applied to x € X both yield
m(a(r(x)))

(G2) the identity element is the identity function idx as
midy —=idxm =

1 1

(G3) the inverse function 7! satisfies 7! = 7~
(conversely, if 7o = om =idx, then o =7"1)

(G4) fails if the set has more than 2 elements

W:idx



Example: set theory

e All subsets of a set X with the operation of
symmetric difference: AAB = (A\ B)U (B \ A).

(GO)A,BC X = AABC X.

(G1) (AAB)AC = AA(BAC) consists of those elements of
X that belong to an odd number of sets A, B, C (either to
just one of them or to all three)

(G2) the identity element is the empty set () since
AAD = OAA = A for any set A

(G3) the inverse of aset AC X is A itself: AAA=1)
(G4) AAB = BAA=(AUB)\ (AN B)



Example: logic

e Binary logic £ = {"“true”, “false” } with the
operation XOR (eXclusive OR): “x XOR y" means
“either x or y (but not both)".

(GO) “true XOR false” = "false XOR true” = “true”,
“true XOR true” = "false XOR false” = “false”

(G1) “(x XOR y) XOR z"="x XOR (y XOR z)"
(G2) the identity element is “false”
(G3) the inverse of x € L is x itself
(G4) “x XOR y"="y XOR x"



More examples

e Any vector space V' with addition.

Those axioms of the vector space that involve only addition
are exactly axioms of the commutative group.

e Trivial group (G, *), where G = {e} and
exe=e.

Verification of all axioms is straightforward.

e Positive real numbers with the operation

X *xy = 2xy.

(GO) x,y >0 = 2xy >0

(Gl) (xxy)*xz=xx*(y*z)=4xyz

(G2) the identity element is 7 as x * e = x means 2ex = x
(G3)

(G4)

the inverse of x is i as x*y:% means 4xy =1
Xky=y%Xx=2xy



Counterexamples

e Real numbers R with multiplication.
0 has no inverse.

e Positive integers with addition.
No identity element.

e Nonnegative integers with addition.
No inverse element for positive numbers.

e Irrational numbers with addition.
The set is not closed under the operation.

e Integers with subtraction.
The operation is not associative: (a—b) —c=a— (b—c)
only if ¢ =0.

e All subsets of a set X with the operation Ax B=AUB.
The operation is associative and commutative, the empty set
is the identity element. However there is no inverse for a
nonempty set.



Basic properties of groups

e The identity element is unique.

Assume that e; and e, are identity elements. Then
€1 = €16 = 6.

e The inverse element is unique.

Assume that h; and h, are inverses of an element g. Then
h1 = hle = hl(ghz) = (hlg)hz = eh2 = h2.

e (ab)t=btal,

We need to show that (ab)(b~ta™!) = (b ta7!)(a ) =e.
Indeed, (ab)(b~'a™') = ((ab)b~')a~ :( (bb71))a™

= (ae)a~! =aa~! =e. Similarly, (b 1a- )( b) =
b'(a7(ab)) = b7'((a7ta)b) = b~'(eb) = b b =e.

o (a1ay...a,) t=a;l. . .a,'a; "



Basic properties of groups

e Cancellation properties: ab=ac =— b=c¢
and ba=ca = b=c forall a,b,ceG.
Indeed, ab=ac = a(ab) = a*(ac)

= (a'a)b=(ata)c = eb=ec = b=c

Similarly, ba=ca = (ba)a—! = (ca)a™!

= b(aa ') =c(aa™!) = be=ce = b=c.

o If hg=g or gh=g forsome g & G, then
h is the identity element.

Indeed, hg =g — hg = eg. By right cancellation, h = e.
Likewise, gh =g = gh = ge. By left cancellation, h = e.

o gh=e < hg=e < h=g"

gh=e<=gh=ggle=s h=gl«= hg=glg<=hg=e



