Lecture 6:

MATH 415

Modern Algebra I

Semigroups.

Groups

Definition. A **group** is a binary structure (G, *) that satisfies the following axioms:

(G0: closure)

for all elements g and h of G, g*h is an element of G;

(G1: associativity)

(g * h) * k = g * (h * k) for all $g, h, k \in G$;

(G2: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of G, such that e * g = g * e = g for all $g \in G$;

(G3: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of g, such that g * h = h * g = e.

The group (G,*) is said to be **commutative** (or **abelian**) if it satisfies an additional axiom:

(G4: commutativity) g * h = h * g for all $g, h \in G$.

Semigroups

Definition. A **semigroup** is a binary structure (S,*) that satisfies the following axioms:

(S0: closure)

for all elements g and h of S, g * h is an element of S;

(S1: associativity)

$$(g*h)*k = g*(h*k)$$
 for all $g,h,k \in S$.

The semigroup (S, *) is said to be a **monoid** if it satisfies an additional axiom:

(S2: existence of identity) there exists an element $e \in S$ such that e * g = g * e = g for all $g \in S$.

Optional useful properties of semigroups:

(S3: cancellation) $g * h_1 = g * h_2$ implies $h_1 = h_2$ and $h_1 * g = h_2 * g$ implies $h_1 = h_2$ for all $g, h_1, h_2 \in S$. **(S4: commutativity)** g * h = h * g for all $g, h \in S$.

Examples of semigroups

- Clearly, any group is also a semigroup and a monoid.
- ullet Real numbers $\mathbb R$ with multiplication (commutative monoid).
- Positive integers with addition (commutative semigroup with cancellation).
- Positive integers with multiplication (commutative monoid with cancellation).
- Given a nonempty set X, all functions $f: X \to X$ with composition (monoid).
- All injective functions $f: X \to X$ with composition (monoid with left cancellation: $g \circ f_1 = g \circ f_2 \implies f_1 = f_2$).
- All surjective functions $f: X \to X$ with composition (monoid with right cancellation: $f_1 \circ g = f_2 \circ g \implies f_1 = f_2$).

Examples of semigroups

- All $n \times n$ matrices with multiplication (monoid).
- All $n \times n$ matrices with integer entries, with multiplication (monoid).
- Invertible $n \times n$ matrices with integer entries, with multiplication (monoid with cancellation).
- ullet All subsets of a set X with the operation of union (commutative monoid).
- ullet All subsets of a set X with the operation of intersection (commutative monoid).
- Positive integers with the operation $a * b = \max(a, b)$ (commutative monoid).
- Positive integers with the operation a * b = min(a, b) (commutative semigroup).

Examples of semigroups

• Given a finite alphabet X, the set X^* of all finite words (strings) in X with the operation of concatenation.

If $w_1 = a_1 a_2 \dots a_n$ and $w_2 = b_1 b_2 \dots b_k$, then $w_1 w_2 = a_1 a_2 \dots a_n b_1 b_2 \dots b_k$. This is a monoid with cancellation. The identity element is the empty word.

Powers of an element in a semigroup

Suppose S is a semigroup. Let us use multiplicative notation for the operation on S. The **powers** of an element $g \in S$ are defined inductively:

$$g^1 = g$$
 and $g^{k+1} = g^k g$ for every integer $k \ge 1$.

Theorem Let g be an element of a semigroup G and $r,s\in\mathbb{Z},\ r,s>0$. Then (i) $g^rg^s=g^{r+s}$, (ii) $(g^r)^s=g^{rs}$.

Proof: Both formulas are proved by induction on s.

(i) The base case s=1 follows from the definition: $g^r g^1 = g^r g = g^{r+1}$. The induction step relies on associativity. Assume that $g^r g^s = g^{r+s}$ for some value of s (and all r).

Then
$$g^r g^{s+1} = g^r (g^s g) = (g^r g^s) g = g^{r+s} g = g^{r+(s+1)}$$
.

(ii) The base case s=1 is trivial: $(g^r)^1=g^r=g^{r\cdot 1}$. The induction step relies on (i), which has already been proved. Assume that $(g^r)^s = g^{rs}$ for some value of s and all r. Then $(g^r)^{s+1} = (g^r)^s g^r = g^{rs} g^r = g^{rs+r} = g^{r(s+1)}$.

Powers of an element in a group

Let g be an element of a group G. The positive **powers** of g are defined inductively:

$$g^1 = g$$
 and $g^{k+1} = g^k g$ for every integer $k \ge 1$.

The negative powers of g are defined as the positive powers of its inverse: $g^{-k} = (g^{-1})^k$ for every positive integer k. Finally, we set $g^0 = e$.

Theorem Let g be an element of a group G and $r, s \in \mathbb{Z}$. Then (i) $g^r g^s = g^{r+s}$ and (ii) $(g^r)^s = g^{rs}$.

Idea of the proof: The case r,s>0 is already settled in a more general context of semigroups. The case when r=0 or s=0 is trivial. The case when r<0 or s<0 is reduced to the case of positive r,s using the following lemma.

Lemma $(g^k)^{-1} = g^{-k}$ for all k > 0.

Corollary All powers of g commute with one another: $g^rg^s = g^sg^r$ for all $r, s \in \mathbb{Z}$.

Theorem Any finite semigroup with cancellation is actually a group.

Lemma If S is a finite semigroup with cancellation, then for any $s \in S$ there exists an integer $k \ge 2$ such that $s^k = s$.

Proof: Since S is finite, the sequence s, s^2, s^3, \ldots contains repetitions, i.e., $s^k = s^m$ for some $k > m \ge 1$. If m = 1 then we are done. If m > 1 then $s^{m-1}s^{k-m+1} = s^{m-1}s$, which implies $s^{k-m+1} = s$.

Proof of the theorem: Take any $s \in S$. By Lemma, we have $s^k = s$ for some $k \geq 2$. Then $e = s^{k-1}$ is the identity element. Indeed, for any $g \in S$ we have $s^k g = sg$ or, equivalently, s(eg) = sg. After cancellation, eg = g. Similarly, ge = g for all $g \in S$. Finally, for any $g \in S$ there is $n \geq 2$ such that $g^n = g = ge$. Then $g^{n-1} = e$, which implies that $g^{n-2} = g^{-1}$.