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Lecture 6:
Semigroups.



Groups

Definition. A group is a binary structure (G , ∗) that satisfies
the following axioms:

(G0: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G1: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G2: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G3: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or abelian) if
it satisfies an additional axiom:

(G4: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Semigroups

Definition. A semigroup is a binary structure (S , ∗) that
satisfies the following axioms:

(S0: closure)
for all elements g and h of S , g ∗ h is an element of S ;

(S1: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ S .

The semigroup (S , ∗) is said to be a monoid if it satisfies an
additional axiom:

(S2: existence of identity) there exists an element e ∈ S

such that e ∗ g = g ∗ e = g for all g ∈ S .

Optional useful properties of semigroups:

(S3: cancellation) g ∗ h1 = g ∗ h2 implies h1 = h2 and
h1 ∗ g = h2 ∗ g implies h1 = h2 for all g , h1, h2 ∈ S .

(S4: commutativity) g ∗ h = h ∗ g for all g , h ∈ S .



Examples of semigroups

• Clearly, any group is also a semigroup and a monoid.

• Real numbers R with multiplication (commutative monoid).

• Positive integers with addition (commutative semigroup
with cancellation).

• Positive integers with multiplication (commutative monoid
with cancellation).

• Given a nonempty set X , all functions f : X → X with
composition (monoid).

• All injective functions f : X → X with composition
(monoid with left cancellation: g ◦ f1 = g ◦ f2 =⇒ f1 = f2).

• All surjective functions f : X → X with composition
(monoid with right cancellation: f1 ◦ g = f2 ◦ g =⇒ f1 = f2).



Examples of semigroups

• All n×n matrices with multiplication (monoid).

• All n×n matrices with integer entries, with multiplication
(monoid).

• Invertible n×n matrices with integer entries, with
multiplication (monoid with cancellation).

• All subsets of a set X with the operation of union
(commutative monoid).

• All subsets of a set X with the operation of intersection
(commutative monoid).

• Positive integers with the operation a ∗ b = max(a, b)
(commutative monoid).

• Positive integers with the operation a ∗ b = min(a, b)
(commutative semigroup).



Examples of semigroups

• Given a finite alphabet X , the set X ∗ of all finite
words (strings) in X with the operation of

concatenation.

If w1 = a1a2 . . . an and w2 = b1b2 . . . bk , then
w1w2 = a1a2 . . . anb1b2 . . . bk . This is a monoid with
cancellation. The identity element is the empty word.



Powers of an element in a semigroup

Suppose S is a semigroup. Let us use multiplicative notation
for the operation on S . The powers of an element g ∈ S are
defined inductively:

g 1 = g and g k+1 = g kg for every integer k ≥ 1.

Theorem Let g be an element of a semigroup G and
r , s ∈ Z, r , s > 0. Then (i) g rg s = g r+s , (ii) (g r)s = g rs .

Proof: Both formulas are proved by induction on s.
(i) The base case s = 1 follows from the definition:
g rg 1 = g rg = g r+1. The induction step relies on associativity.
Assume that g rg s = g r+s for some value of s (and all r).
Then g rg s+1 = g r(g sg) = (g rg s)g = g r+sg = g r+(s+1).
(ii) The base case s = 1 is trivial: (g r)1 = g r = g r ·1. The
induction step relies on (i), which has already been proved.
Assume that (g r)s = g rs for some value of s and all r . Then
(g r)s+1 = (g r)sg r = g rsg r = g rs+r = g r(s+1).



Powers of an element in a group
Let g be an element of a group G . The positive powers of g
are defined inductively:

g 1 = g and g k+1 = g kg for every integer k ≥ 1.

The negative powers of g are defined as the positive powers of
its inverse: g−k = (g−1)k for every positive integer k.
Finally, we set g 0 = e.

Theorem Let g be an element of a group G and r , s ∈ Z.
Then (i) g rg s = g r+s and (ii) (g r)s = g rs .

Idea of the proof: The case r , s > 0 is already settled in a
more general context of semigroups. The case when r = 0 or
s = 0 is trivial. The case when r < 0 or s < 0 is reduced to
the case of positive r , s using the following lemma.

Lemma (g k)−1 = g−k for all k > 0.

Corollary All powers of g commute with one another:
g rg s = g sg r for all r , s ∈ Z.



Theorem Any finite semigroup with cancellation is

actually a group.

Lemma If S is a finite semigroup with
cancellation, then for any s ∈ S there exists an

integer k ≥ 2 such that sk = s.

Proof: Since S is finite, the sequence s, s2, s3, . . . contains
repetitions, i.e., sk = sm for some k > m ≥ 1. If m = 1
then we are done. If m > 1 then sm−1sk−m+1 = sm−1s,
which implies sk−m+1 = s.

Proof of the theorem: Take any s ∈ S . By Lemma, we have
sk = s for some k ≥ 2. Then e = sk−1 is the identity
element. Indeed, for any g ∈ S we have skg = sg or,
equivalently, s(eg) = sg . After cancellation, eg = g .
Similarly, ge = g for all g ∈ S . Finally, for any g ∈ S there
is n ≥ 2 such that g n = g = ge. Then g n−1 = e, which
implies that g n−2 = g−1.


