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Lecture 7:
Subgroups.

Order of an element in a group.



Groups

Definition. A group is a binary structure (G , ∗) that satisfies
the following axioms:

(G0: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G1: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G2: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G3: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or abelian) if
it satisfies an additional axiom:

(G4: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Subgroups

Definition. A group H is a called a subgroup of a group G if
H is a subset of G and the group operation on H is obtained
by restricting the group operation on G . Notation: H ≤ G .

Proposition If H is a subgroup of G then (i) the identity
element in H is the same as the identity element in G ;
(ii) for any g ∈ H the inverse g−1 taken in H is the same as
the inverse taken in G .

Theorem Let H be a subset of a group G and define an
operation on H by restricting the group operation of G . Then
the following are equivalent:
(i) H is a subgroup of G ;
(ii) H contains e and is closed under the operation and under
taking the inverse, that is, g , h ∈ H =⇒ gh ∈ H and
g ∈ H =⇒ g−1 ∈ H;
(iii) H is nonempty and g , h ∈ H =⇒ gh−1 ∈ H.



Examples of subgroups:

• (Z,+) is a subgroup of (R,+).

• (Q \ {0}, ·) is a subgroup of (R \ {0}, ·).

• If V0 is a subspace of a vector space V , then it is also a
subgroup of the additive group V .

• Any group G is a subgroup of itself.

• If e is the identity element of a group G , then {e} is the
trivial subgroup of G .

Counterexamples:

• (R+
, ·) is not a subgroup of (R,+) since the operations do

not agree (even though the groups are isomorphic).

• (Zn,+n) is not a subgroup of (Z,+) since the operations
do not agree (even though they do agree sometimes).

• (Z \ {0}, ·) is not a subgroup of (R \ {0}, ·) since
(Z \ {0}, ·) is not a group (it is a subsemigroup).



Intersection of subgroups

Theorem 1 Let H1 and H2 be subgroups of a
group G . Then the intersection H1 ∩ H2 is also a

subgroup of G .

Proof: The identity element e of G belongs to every
subgroup. Hence e ∈ H1 ∩ H2. In particular, the intersection
is nonempty. Now for any elements g and h of the group G ,
g , h ∈ H1 ∩ H2 =⇒ g , h ∈ H1 and g , h ∈ H2

=⇒ gh−1 ∈ H1 and gh−1 ∈ H2 =⇒ gh−1 ∈ H1 ∩ H2.

Theorem 2 Let Hα, α ∈ A be a nonempty
collection of subgroups of the same group G

(where the index set A may be infinite). Then
the intersection

⋂
α
Hα is also a subgroup of G .



Generators of a group

Let S be a set (or a list) of some elements of a group G .
The group generated by S , denoted 〈S〉, is the smallest
subgroup of G that contains the set S . The elements of the
set S are called generators of the group 〈S〉.

Theorem 1 The group 〈S〉 is well defined. Indeed, it is the
intersection of all subgroups of G that contain S .

Note that we have at least one subgroup of G containing S ,
namely, G itself. If it is the only one, i.e., 〈S〉 = G , then S is
called a generating set for the group G .

Theorem 2 If S is nonempty, then the group 〈S〉 consists of
all elements of the form g1g2 . . . gk , where each gi is either a
generator s ∈ S or the inverse s−1 of a generator.



Powers of an element in a group

A cyclic group is a subgroup generated by a single element.
The cyclic group 〈g〉 consists of all powers of the element g
(in multiplicative notation).

Let g be an element of a group G . The positive powers of g
are defined inductively:

g 1 = g and g k+1 = g kg for every integer k ≥ 1.

The negative powers of g are defined as the positive powers of
its inverse: g−k = (g−1)k for every positive integer k.
Finally, we set g 0 = e.

Theorem Let g be an element of a group G and r , s ∈ Z.
Then (i) g rg s = g r+s and (ii) (g r)s = g rs .

Corollary All powers of g commute with one another:
g rg s = g sg r for all r , s ∈ Z.



Order of an element

Let g be an element of a group G . We say that g has finite
order if g n = e for some positive integer n.

If this is the case, then the smallest positive integer n with this
property is called the order of g . Otherwise g is said to be of
infinite order. The order of g can be denoted |g | or o(g).

Proposition 1 Let G be a group and g ∈ G be an element
of infinite order. Then g r 6= g s whenever r 6= s.

Proposition 2 Let G be a group and g ∈ G be an element
of finite order n. Then g r = g s if and only if r and s leave
the same remainder after division by n. In particular, g r = e

if and only if the order n divides r .

Corollary 1 The order of an element g equals the number of
distinct powers of g .

Corollary 2 Every element of a finite group has finite order.



Order of an element

Lemma Suppose g r = g s for some g ∈ G and r , s ∈ Z,
where r 6= s. Then the element g has finite order. Moreover,
the order of g divides the difference s − r .

Proof: Using properties of the powers, we obtain

g s−r = g sg−r = g s(g r)−1 = g s(g s)−1 = e.

Further, g r−s = g (s−r)(−1) = (g s−r)−1 = e−1 = e. Since
r 6= s, one of the numbers s − r and r − s is a positive
integer. It follows that g has finite order. Let n denote that
order. Dividing s − r by n, we obtain s − r = nq + t, where
q, t ∈ Z, 0 ≤ t < n. Then

g t = g s−r−nq = g s−rg−nq = g s−r(g n)−q = ee−q = e

since ek = e for all k ∈ Z. By definition of the order, the
remainder t cannot be positive (as t < n). Therefore t = 0.
Thus s − r is divisible by n.



Order of an element

Proposition 1 Let G be a group and g ∈ G be an element
of infinite order. Then g r 6= g s whenever r 6= s.

Proof: This follows directly from the lemma.

Proposition 2 Let G be a group and g ∈ G be an element
of finite order n. Then g r = g s if and only if r and s leave
the same remainder after division by n. In particular, g r = e

if and only if the order n divides r .

Proof: The “only if” part follows directly from the lemma.
Let us prove the “if” part. Assume r and s leave the same
remainder after division by n. Then the difference s − r is
divisible by n, that is, s − r = nq for some q ∈ Z. It follows
that

g r = g sg r−s = g sg−nq = g s(g n)−q = g se−q = g se = g s .


