MATH 415

Modern Algebra I
Lecture 7:
Subgroups.
Order of an element in a group.

Groups

Definition. A group is a binary structure $(G, *)$ that satisfies the following axioms:
(G0: closure)
for all elements g and h of $G, g * h$ is an element of G;
(G1: associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in G$;
(G2: existence of identity)
there exists an element $e \in G$, called the identity (or unit) of G, such that $e * g=g * e=g$ for all $g \in G$;
(G3: existence of inverse)
for every $g \in G$ there exists an element $h \in G$, called the inverse of g, such that $g * h=h * g=e$.
The group $(G, *)$ is said to be commutative (or abelian) if it satisfies an additional axiom:
(G4: commutativity) $g * h=h * g$ for all $g, h \in G$.

Subgroups

Definition. A group H is a called a subgroup of a group G if H is a subset of G and the group operation on H is obtained by restricting the group operation on G. Notation: $H \leq G$.

Proposition If H is a subgroup of G then (i) the identity element in H is the same as the identity element in G; (ii) for any $g \in H$ the inverse g^{-1} taken in H is the same as the inverse taken in G.

Theorem Let H be a subset of a group G and define an operation on H by restricting the group operation of G. Then the following are equivalent:
(i) H is a subgroup of G;
(ii) H contains e and is closed under the operation and under taking the inverse, that is, $g, h \in H \Longrightarrow g h \in H$ and $g \in H \Longrightarrow g^{-1} \in H$;
(iii) H is nonempty and $g, h \in H \Longrightarrow g h^{-1} \in H$.

Examples of subgroups:

- $(\mathbb{Z},+)$ is a subgroup of $(\mathbb{R},+)$.
- ($\mathbb{Q} \backslash\{0\}, \cdot)$ is a subgroup of $(\mathbb{R} \backslash\{0\}, \cdot)$.
- If V_{0} is a subspace of a vector space V, then it is also a subgroup of the additive group V.
- Any group G is a subgroup of itself.
- If e is the identity element of a group G, then $\{e\}$ is the trivial subgroup of G.

Counterexamples:

- $\left(\mathbb{R}^{+}, \cdot\right)$ is not a subgroup of $(\mathbb{R},+)$ since the operations do not agree (even though the groups are isomorphic).
- $\left(\mathbb{Z}_{n},+_{n}\right)$ is not a subgroup of $(\mathbb{Z},+)$ since the operations do not agree (even though they do agree sometimes).
- $(\mathbb{Z} \backslash\{0\}, \cdot)$ is not a subgroup of $(\mathbb{R} \backslash\{0\}, \cdot)$ since
$(\mathbb{Z} \backslash\{0\}, \cdot)$ is not a group (it is a subsemigroup).

Intersection of subgroups

Theorem 1 Let H_{1} and H_{2} be subgroups of a group G. Then the intersection $H_{1} \cap H_{2}$ is also a subgroup of G.

Proof: The identity element e of G belongs to every subgroup. Hence $e \in H_{1} \cap H_{2}$. In particular, the intersection is nonempty. Now for any elements g and h of the group G, $g, h \in H_{1} \cap H_{2} \Longrightarrow g, h \in H_{1}$ and $g, h \in H_{2}$ $\Longrightarrow g h^{-1} \in H_{1}$ and $g h^{-1} \in H_{2} \Longrightarrow g h^{-1} \in H_{1} \cap H_{2}$.

Theorem 2 Let $H_{\alpha}, \alpha \in A$ be a nonempty collection of subgroups of the same group G (where the index set A may be infinite). Then the intersection $\bigcap_{\alpha} H_{\alpha}$ is also a subgroup of G.

Generators of a group

Let S be a set (or a list) of some elements of a group G. The group generated by S, denoted $\langle S\rangle$, is the smallest subgroup of G that contains the set S. The elements of the set S are called generators of the group $\langle S\rangle$.

Theorem 1 The group $\langle S\rangle$ is well defined. Indeed, it is the intersection of all subgroups of G that contain S.

Note that we have at least one subgroup of G containing S, namely, G itself. If it is the only one, i.e., $\langle S\rangle=G$, then S is called a generating set for the group G.

Theorem 2 If S is nonempty, then the group $\langle S\rangle$ consists of all elements of the form $g_{1} g_{2} \ldots g_{k}$, where each g_{i} is either a generator $s \in S$ or the inverse s^{-1} of a generator.

Powers of an element in a group

A cyclic group is a subgroup generated by a single element. The cyclic group $\langle g\rangle$ consists of all powers of the element g (in multiplicative notation).

Let g be an element of a group G. The positive powers of g are defined inductively:

$$
g^{1}=g \text { and } g^{k+1}=g^{k} g \text { for every integer } k \geq 1
$$

The negative powers of g are defined as the positive powers of its inverse: $g^{-k}=\left(g^{-1}\right)^{k}$ for every positive integer k.
Finally, we set $g^{0}=e$.
Theorem Let g be an element of a group G and $r, s \in \mathbb{Z}$.
Then (i) $g^{r} g^{s}=g^{r+s}$ and (ii) $\left(g^{r}\right)^{s}=g^{r s}$.
Corollary All powers of g commute with one another: $g^{r} g^{s}=g^{s} g^{r}$ for all $r, s \in \mathbb{Z}$.

Order of an element

Let g be an element of a group G. We say that g has finite order if $g^{n}=e$ for some positive integer n.
If this is the case, then the smallest positive integer n with this property is called the order of g. Otherwise g is said to be of infinite order. The order of g can be denoted $|g|$ or $o(g)$.

Proposition 1 Let G be a group and $g \in G$ be an element of infinite order. Then $g^{r} \neq g^{s}$ whenever $r \neq s$.

Proposition 2 Let G be a group and $g \in G$ be an element of finite order n. Then $g^{r}=g^{s}$ if and only if r and s leave the same remainder after division by n. In particular, $g^{r}=e$ if and only if the order n divides r.

Corollary 1 The order of an element g equals the number of distinct powers of g.

Corollary 2 Every element of a finite group has finite order.

Order of an element

Lemma Suppose $g^{r}=g^{s}$ for some $g \in G$ and $r, s \in \mathbb{Z}$, where $r \neq s$. Then the element g has finite order. Moreover, the order of g divides the difference $s-r$.

Proof: Using properties of the powers, we obtain

$$
g^{s-r}=g^{s} g^{-r}=g^{s}\left(g^{r}\right)^{-1}=g^{s}\left(g^{s}\right)^{-1}=e
$$

Further, $g^{r-s}=g^{(s-r)(-1)}=\left(g^{s-r}\right)^{-1}=e^{-1}=e$. Since $r \neq s$, one of the numbers $s-r$ and $r-s$ is a positive integer. It follows that g has finite order. Let n denote that order. Dividing $s-r$ by n, we obtain $s-r=n q+t$, where $q, t \in \mathbb{Z}, 0 \leq t<n$. Then

$$
g^{t}=g^{s-r-n q}=g^{s-r} g^{-n q}=g^{s-r}\left(g^{n}\right)^{-q}=e e^{-q}=e
$$

since $e^{k}=e$ for all $k \in \mathbb{Z}$. By definition of the order, the remainder t cannot be positive (as $t<n$). Therefore $t=0$. Thus $s-r$ is divisible by n.

Order of an element

Proposition 1 Let G be a group and $g \in G$ be an element of infinite order. Then $g^{r} \neq g^{s}$ whenever $r \neq s$.
Proof: This follows directly from the lemma.
Proposition 2 Let G be a group and $g \in G$ be an element of finite order n. Then $g^{r}=g^{s}$ if and only if r and s leave the same remainder after division by n. In particular, $g^{r}=e$ if and only if the order n divides r.

Proof: The "only if" part follows directly from the lemma. Let us prove the "if" part. Assume r and s leave the same remainder after division by n. Then the difference $s-r$ is divisible by n, that is, $s-r=n q$ for some $q \in \mathbb{Z}$. It follows that

$$
g^{r}=g^{s} g^{r-s}=g^{s} g^{-n q}=g^{s}\left(g^{n}\right)^{-q}=g^{s} e^{-q}=g^{s} e=g^{s} .
$$

