MATH 415

Modern Algebra I

Lecture 8:
 Cyclic groups.
 Cayley graphs.

Order of an element

Let g be an element of a group G. We say that g has finite order if $g^{n}=e$ for some positive integer n.
If this is the case, then the smallest positive integer n with this property is called the order of g. Otherwise g is said to be of infinite order. The order of g can be denoted $|g|$ or $o(g)$.

Proposition 1 Let G be a group and $g \in G$ be an element of infinite order. Then $g^{r} \neq g^{s}$ whenever $r \neq s$.

Proposition 2 Let G be a group and $g \in G$ be an element of finite order n. Then $g^{r}=g^{s}$ if and only if r and s leave the same remainder after division by n. In particular, $g^{r}=e$ if and only if the order n divides r.

Corollary 1 The order of an element g equals the number of distinct powers of g.

Corollary 2 Every element of a finite group has finite order.

Proposition 3 The inverse g^{-1} has the same order as g.
Proof: $\left(g^{-1}\right)^{n}=g^{-n}=\left(g^{n}\right)^{-1}$ for any integer $n>0$. Since $e^{-1}=e$, it follows that $\left(g^{-1}\right)^{n}=e$ if and only if $g^{n}=e$. As a consequence, g^{-1} and g are of the same order.

Proposition 4 Suppose that an element g has finite order n. Then for any integer $k \neq 0$ the power g^{k} has order $\frac{n}{\operatorname{gcd}(k, n)}$.

Proof: Let N be a positive integer. Then $\left(g^{k}\right)^{N}=g^{k N}$. Hence $\left(g^{k}\right)^{N}=e$ if and only if $k N$ is divisible by n. The smallest number N with this property is $n / \operatorname{gcd}(k, n)$.

Proposition 5 If an element g has infinite order, then for any integer $k \neq 0$ the power g^{k} has infinite order as well.

Proof: We have that $g^{r} \neq g^{s}$ whenever $r \neq s$. In particular, $\left(g^{k}\right)^{n}=g^{k n} \neq g^{0}=e$ for any integer $n>0$.

Cyclic groups

A cyclic group is a subgroup generated by a single element.
Cyclic group: $\langle g\rangle=\left\{g^{n} \mid n \in \mathbb{Z}\right\}$ (in multiplicative notation) or $\langle g\rangle=\{n g \mid n \in \mathbb{Z}\}$ (in additive notation).
Any cyclic group is abelian since $g^{n} g^{m}=g^{n+m}=g^{m} g^{n}$ for all $m, n \in \mathbb{Z}$.

If g has finite order n, then the cyclic group $\langle g\rangle$ consists of n elements $g, g^{2}, \ldots, g^{n-1}, g^{n}=e$.
If g is of infinite order, then $\langle g\rangle$ is infinite.
Examples of cyclic groups: $\mathbb{Z}, 3 \mathbb{Z}, \mathbb{Z}_{5}, \mathbb{Z}_{8}$.
Examples of noncyclic groups: any uncountable group, any non-abelian group, \mathbb{Q} with addition, $\mathbb{Q} \backslash\{0\}$ with multiplication.

Subgroups of a cyclic group

Theorem Every subgroup of a cyclic group is

 cyclic as well.Proof: Suppose that G is a cyclic group and H is a subgroup of G. Let g be the generator of $G, G=\left\{g^{n} \mid n \in \mathbb{Z}\right\}$. Denote by k the smallest positive integer such that $g^{k} \in H$ (if there is no such integer then $H=\{e\}$, which is a cyclic group). We are going to show that $H=\left\langle g^{k}\right\rangle$.
Since $g^{k} \in H$, it follows that $\left\langle g^{k}\right\rangle \subset H$. Let us show that $H \subset\left\langle g^{k}\right\rangle$. Take any $h \in H$. Then $h=g^{n}$ for some $n \in \mathbb{Z}$. We have $n=k q+r$, where q is the quotient and r is the remainder after division of n by $k(0 \leq r<k)$. It follows that $g^{r}=g^{n-k q}=g^{n} g^{-k q}=h\left(g^{k}\right)^{-q} \in H$. By the choice of k, we obtain that $r=0$. Thus $h=g^{n}=g^{k q}=\left(g^{k}\right)^{q} \in\left\langle g^{k}\right\rangle$.

Examples

- Integers \mathbb{Z} with addition.

The group is cyclic, $\mathbb{Z}=\langle 1\rangle=\langle-1\rangle$. The proper cyclic subgroups of \mathbb{Z} are: the trivial subgroup $\{0\}=\langle 0\rangle$ and, for any integer $m \geq 2$, the group $m \mathbb{Z}=\langle m\rangle=\langle-m\rangle$. These are all subgroups of \mathbb{Z}.

- \mathbb{Z}_{5} with addition modulo 5 .

The group is cyclic, $\mathbb{Z}_{5}=\langle 1\rangle=\langle 2\rangle=\langle 3\rangle=\langle 4\rangle$. The only proper subgroup is the trivial subgroup $\{0\}=\langle 0\rangle$.

- \mathbb{Z}_{6} with addition modulo 6 .

The group is cyclic, $\mathbb{Z}_{6}=\langle 1\rangle=\langle 5\rangle$. Proper subgroups are $\{0\}=\langle 0\rangle, \quad\{0,3\}=\langle 3\rangle$ and $\{0,2,4\}=\langle 2\rangle=\langle 4\rangle$.

Greatest common divisor

Given two nonzero integers a and b, the greatest common divisor of a and b is the largest natural number that divides both a and b.

Notation: $\operatorname{gcd}(a, b)$.
Example. $a=12, b=18$.
Natural divisors of 12 are $1,2,3,4,6$, and 12 .
Natural divisors of 18 are $1,2,3,6,9$, and 18 .
Common divisors are $1,2,3$, and 6 .
Thus $\operatorname{gcd}(12,18)=6$.
Notice that $\operatorname{gcd}(12,18)$ is divisible by any other common divisor of 12 and 18 .

Definition. Given nonzero integers $a_{1}, a_{2}, \ldots, a_{k}$, the greatest common divisor $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is the largest positive integer that divides $a_{1}, a_{2}, \ldots, a_{k}$.

Theorem (i) $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is the smallest positive integer represented as $n_{1} a_{1}+n_{2} a_{2}+\cdots+n_{k} a_{k}$, where each $n_{i} \in \mathbb{Z}$ (that is, as an integral linear combination of $\left.a_{1}, a_{2}, \ldots, a_{k}\right)$.
(ii) $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is divisible by any other common divisor of $a_{1}, a_{2}, \ldots, a_{k}$.
Proof. Consider an additive subgroup H of \mathbb{Z} generated by $a_{1}, a_{2}, \ldots, a_{k}$. The subgroup H consists exactly of integral linear combinations of $a_{1}, a_{2}, \ldots, a_{k}$. Note that H is not a trivial subgroup. By the above, $H=m \mathbb{Z}$ for some integer $m \geq 1$. Clearly, m is the smallest positive element of H and a common divisor of $a_{1}, a_{2}, \ldots, a_{k}$. Since $m \in H$, it is an integral linear combination of $a_{1}, a_{2}, \ldots, a_{k}$ and hence is divisible by any other common divisor.

Cayley graph

A finitely generated group G can be visualized via the Cayley graph. Suppose a, b, \ldots, c is a finite list of generators for G. The Cayley graph is a directed graph (or digraph) with labeled edges where vertices are elements of G and edges show multiplication by generators. Namely, every edge is of the form $g \xrightarrow{s} g s$. Alternatively, one can assign colors to generators and think of the Cayley graph as a graph with colored edges.
The Cayley graph can be used for computations in G. For example, let $h=a^{2} b^{-1} c a^{-1}$. To compute $g h$, we need to find a path of the form (note the directions of edges)

$$
g \xrightarrow{a} g_{1} \xrightarrow{a} g_{2} \stackrel{b}{\longleftarrow} g_{3} \xrightarrow{c} g_{4} \stackrel{a}{\leftarrow} g_{5} .
$$

Such a path exists and is unique. Then $g h=g_{5}$.
Also, the Cayley graph can be used to find relations between generators, which are equalities of the form $g_{1} g_{2} \ldots g_{k}=1$, where each g_{i} is a generator or the inverse of a generator. Any relation corresponds to a closed path in the graph.

