MATH 415

Lecture 10: Cycle decomposition. Order of a permutation.

Modern Algebra I

Permutations

Let X be a finite set. A **permutation** of X is a bijection from X to itself.

Two-row notation.
$$\pi = \begin{pmatrix} a & b & c & \dots \\ \pi(a) & \pi(b) & \pi(c) & \dots \end{pmatrix}$$
,

where a, b, c, \ldots is a list of all elements in the domain of π .

The set of all permutations of a finite set X is called the **symmetric group** on X. *Notation:* S_X , Σ_X , $\operatorname{Sym}(X)$.

The set of all permutations of $\{1, 2, ..., n\}$ is called the **symmetric group on** n **symbols** and denoted S_n or S(n).

Given two permutations π and σ , the composition $\pi\sigma$, defined by $\pi\sigma(x)=\pi(\sigma(x))$, is called the **product** of these permutations. In general, $\pi\sigma\neq\sigma\pi$, i.e., multiplication of permutations is not commutative. However it is associative: $\pi(\sigma\tau)=(\pi\sigma)\tau$.

Cycles

A permutation π of a set X is called a **cycle** (or **cyclic**) of length r if there exist r distinct elements $x_1, x_2, \ldots, x_r \in X$ such that

$$\pi(x_1) = x_2, \ \pi(x_2) = x_3, \ldots, \ \pi(x_{r-1}) = x_r, \ \pi(x_r) = x_1,$$

and
$$\pi(x) = x$$
 for any other $x \in X$.

Notation.
$$\pi = (x_1 \ x_2 \ \dots \ x_r)$$
.

The identity function is (the only) cycle of length 1. Any cycle of length 2 is called a **transposition**.

The inverse of a cycle is also a cycle of the same length. Indeed, if $\pi = (x_1 \ x_2 \ \dots \ x_r)$, then $\pi^{-1} = (x_r \ x_{r-1} \ \dots \ x_2 \ x_1)$.

Example. Any permutation of $\{1,2,3\}$ is a cycle.

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = id, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (2 3), \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = (1 2),$$
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (1 2 3), \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (1 3 2), \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (1 3).$$

Cycle decomposition

Let π be a permutation of X. We say that π moves an element $x \in X$ if $\pi(x) \neq x$. Otherwise π fixes x.

Two permutations π and σ are called **disjoint** if the set of elements moved by π is disjoint from the set of elements moved by σ .

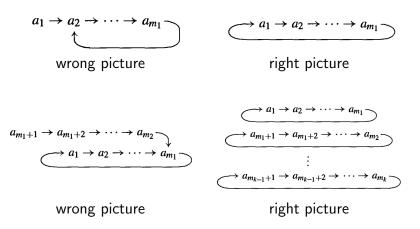
Theorem If π and σ are disjoint permutations in S_X , then they commute: $\pi\sigma = \sigma\pi$.

Idea of the proof: If π moves an element x, then it also moves $\pi(x)$. Hence σ fixes both so that $\pi\sigma(x) = \sigma\pi(x) = \pi(x)$.

Theorem Any permutation of a finite set can be expressed as a product of disjoint cycles. This **cycle decomposition** is unique up to rearrangement of the cycles involved.

Idea of the proof: Given $\pi \in S_X$, for any $x \in X$ consider a sequence $a_1 = x, a_2, a_3, \ldots$, where $a_{m+1} = \pi(a_m)$. Let r be the least index such that $a_r = a_k$ for some k < r. Then k = 1.

Cycle decomposition



Remark. Any cycle of length m can be denoted in m different ways depending on a choice of the initial point. For example, $(1\ 2\ 3\ 4) = (2\ 3\ 4\ 1) = (3\ 4\ 1\ 2) = (4\ 1\ 2\ 3)$.

Examples

$$\bullet \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8 \end{pmatrix}$$

$$= (1 2 4 9 3 7 5)(6 12 8 11)(10)$$

$$= (1 2 4 9 3 7 5)(6 12 8 11).$$

•
$$(1\ 2)(2\ 3)(3\ 4)(4\ 5)(5\ 6) = (1\ 2\ 3\ 4\ 5\ 6).$$

$$\bullet$$
 (1 2)(1 3)(1 4)(1 5) = (1 5 4 3 2).

$$\bullet$$
 (2 4 3)(1 2)(2 3 4) = (1 4).

Order of a permutation

The **order** of a permutation $\pi \in S_n$, denoted $|\pi|$ or $o(\pi)$, is defined as the smallest positive integer m such that $\pi^m = \mathrm{id}$, the identity map. In other words, this is the order of π as an element of the symmetric group S_n .

(Recall that every element of a finite group has finite order.)

Theorem Let π be a permutation of order m. Then $\pi^r = \pi^s$ if and only if $r \equiv s \mod m$. In particular, $\pi^r = \mathrm{id}$ if and only if the order m divides r.

Remark. Notation $r \equiv s \mod m$ (r is congruent to s modulo m) means that r and s leave the same remainder after division by m.

Theorem Let π be a cyclic permutation. Then the order $|\pi|$ equals the length of the cycle π .

Examples. •
$$\pi = (1 \ 2 \ 3 \ 4 \ 5)$$
.

$$\pi^2 = (1 \ 3 \ 5 \ 2 \ 4), \ \pi^3 = (1 \ 4 \ 2 \ 5 \ 3),$$
 $\pi^4 = (1 \ 5 \ 4 \ 3 \ 2), \ \pi^5 = \mathrm{id}.$
 $\implies |\pi| = 5.$

•
$$\sigma = (1\ 2\ 3\ 4\ 5\ 6)$$
.
 $\sigma^2 = (1\ 3\ 5)(2\ 4\ 6), \ \sigma^3 = (1\ 4)(2\ 5)(3\ 6),$
 $\sigma^4 = (1\ 5\ 3)(2\ 6\ 4), \ \sigma^5 = (1\ 6\ 5\ 4\ 3\ 2), \ \sigma^6 = id$

$$\sigma^2 = (1\ 3\ 5)(2\ 4\ 6), \ \sigma^3 = (1\ 4)(2\ 5)(3\ 6),$$
 $\sigma^4 = (1\ 5\ 3)(2\ 6\ 4), \ \sigma^5 = (1\ 6\ 5\ 4\ 3\ 2), \ \sigma^6 = \mathrm{id}.$
 $\implies |\sigma| = 6.$

•
$$\tau = (1 \ 2 \ 3)(4 \ 5)$$
.
 $\tau^2 = (1 \ 3 \ 2), \ \tau^3 = (4 \ 5), \ \tau^4 = (1 \ 2 \ 3),$

 $\implies |\tau| = 6.$

 $\tau^5 = (1 \ 3 \ 2)(4 \ 5), \ \tau^6 = id.$

$$\Rightarrow |\sigma| = 6.$$
• $\tau = (1 \ 2 \ 3)(4 \ 5).$

$$\Rightarrow |\sigma| = 6.$$
• $\tau = (1 \ 2 \ 3)(4 \ 5).$

$$\implies |\sigma| = 6.$$
• $\tau = (1\ 2\ 3)(4\ 5).$

Lemma 1 Let π and σ be two commuting permutations:

$$\pi\sigma = \sigma\pi$$
. Then

- (i) the powers π^r and σ^s commute for all $r, s \in \mathbb{Z}$,
- (ii) $(\pi\sigma)^r = \pi^r \sigma^r$ for all $r \in \mathbb{Z}$.

Lemma 2 Let π and σ be disjoint permutations in S_n . Then (i) the powers π^r and σ^s are also disjoint,

(ii) $\pi^r \sigma^s = id$ implies $\pi^r = \sigma^s = id$.

Lemma 3 Let π and σ be disjoint permutations in S_n . Then

- (i) they commute: $\pi \sigma = \sigma \pi$,
- (ii) $(\pi\sigma)^r = \mathrm{id}$ if and only if $\pi^r = \sigma^r = \mathrm{id}$,
- (iii) $|\pi\sigma| = \operatorname{lcm}(|\pi|, |\sigma|).$

Theorem Let $\pi \in S_n$ and suppose that $\pi = \sigma_1 \sigma_2 \dots \sigma_k$ is a decomposition of π as a product of disjoint cycles. Then the order of π equals the least common multiple of the lengths of the cycles $\sigma_1, \dots, \sigma_k$.

Examples

$$\bullet \quad \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8 \end{pmatrix}.$$

The cycle decomposition is $\pi = (1\ 2\ 4\ 9\ 3\ 7\ 5)(6\ 12\ 8\ 11)$ or $\pi = (1\ 2\ 4\ 9\ 3\ 7\ 5)(6\ 12\ 8\ 11)(10)$. It follows that $|\pi| = \operatorname{lcm}(7,4) = \operatorname{lcm}(7,4,1) = 28$.

•
$$\sigma = (1\ 2)(3\ 4)(5\ 6)$$
.

This permutation is a product of three disjoint transpositions. Therefore the order of σ equals lcm(2,2,2) = 2.

•
$$\tau = (1\ 2)(1\ 3)(1\ 4)(1\ 5)$$
.

The permutation is given as a product of transpositions. However the transpositions are not disjoint and so this representation does not help to find the order of τ . The cycle decomposition is $\tau=$ (5 4 3 2 1). Hence τ is a cycle of length 5 so that $|\tau|=$ 5.