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Lecture 11:

Sign of a permutation.
Classical definition of the determinant.



Sign of a permutation

Theorem 1 (i) Any permutation of n ≥ 2 elements is a
product of transpositions. (ii) If π = τ1τ2 . . . τk = τ ′1τ

′
2 . . . τ

′
m,

where τi , τ
′
j are transpositions, then the numbers k and m are

of the same parity (that is, both even or both odd).

A permutation π is called even if it is a product of an even
number of transpositions, and odd if it is a product of an odd
number of transpositions.

The sign sgn(π) of the permutation π is defined to be +1 if
π is even, and −1 if π is odd.

Theorem 2 (i) sgn(πσ) = sgn(π) sgn(σ) for any π, σ ∈ Sn.
(ii) sgn(π−1) = sgn(π) for any π ∈ Sn.
(iii) sgn(id) = 1.
(iv) sgn(τ) = −1 for any transposition τ .
(v) sgn(σ) = (−1)r−1 for any cycle σ of length r .



Let π ∈ Sn and i , j be integers, 1 ≤ i < j ≤ n. We say that
the permutation π preserves order of the pair (i , j) if
π(i) < π(j). Otherwise π makes an inversion. Denote by
N(π) the number of inversions made by the permutation π.

Lemma 1 Let τ, π ∈ Sn and suppose that τ is an adjacent
transposition, τ = (k k+1). Then |N(τπ)− N(π)| = 1.

Proof: For every pair (i , j), 1 ≤ i < j ≤ n, let us compare
the order of pairs π(i), π(j) and τπ(i), τπ(j). We observe
that the order differs exactly for one pair, when
{π(i), π(j)} = {k, k+1}. The lemma follows.

Lemma 2 Let π ∈ Sn and τ1, τ2, . . . , τk be adjacent
transpositions. Then (i) for any π ∈ Sn the numbers k and
N(τ1τ2 . . . τkπ)− N(π) are of the same parity,
(ii) the numbers k and N(τ1τ2 . . . τk) are of the same parity.

Sketch of the proof: (i) follows from Lemma 1 by induction
on k. (ii) is a particular case of part (i), when π = id.



Lemma 3 (i) Any cycle of length r is a product of r−1
transpositions. (ii) Any transposition is a product of an odd
number of adjacent transpositions.

Proof: (i) (x1 x2 . . . xr) = (x1 x2)(x2 x3)(x3 x4) . . . (xr−1 xr).

(ii) (k k+r) = σ−1(k k+1)σ, where σ = (k+1 k+2 . . . k+r).

By the above, σ = (k+1 k+2)(k+2 k+3) . . . (k+r−1 k+r)
and σ−1 = (k+r k+r−1) . . . (k+3 k+2)(k+2 k+1).

Theorem (i) Any permutation is a product of transpositions.
(ii) If π = τ1τ2 . . . τk , where τi are transpositions, then the
numbers k and N(π) are of the same parity.

Proof: (i) Any permutation is a product of disjoint cycles.
By Lemma 3, any cycle is a product of transpositions.

(ii) By Lemma 3, each of τ1, τ2, . . . , τk is a product of an
odd number of adjacent transpositions. Hence π= τ ′1τ

′
2 . . . τ

′
m,

where τ ′i are adjacent transpositions and number m is of the
same parity as k. By Lemma 2, m has the same parity as N(π).



Examples

• π =

(

1 2 3 4 5 6 7 8 9 10 11 12
2 4 7 9 1 12 5 11 3 10 6 8

)

.

First we decompose π into a product of disjoint cycles:

π = (1 2 4 9 3 7 5)(6 12 8 11).

The cycle σ1 = (1 2 4 9 3 7 5) has length 7, hence it is an
even permutation. The cycle σ2 = (6 12 8 11) has length 4,
hence it is an odd permutation. Then

sgn(π) = sgn(σ1σ2) = sgn(σ1) sgn(σ2) = 1 · (−1) = −1.

• π = (2 4 3)(1 2)(2 3 4).

π is represented as a product of cycles. The transposition has
sign −1 while the cycles of length 3 have sign +1. Even
though the cycles are not disjoint, sgn(π) = 1 · (−1) · 1 = −1.



Theorem The symmetric group Sn is generated by two
permutations: τ = (1 2) and π = (1 2 3 . . . n).

Proof: Let H = 〈τ, π〉. We have to show that H = Sn.

First we obtain that α = τπ = (2 3 . . . n). Then we observe
that σ(1 2)σ−1 = (σ(1) σ(2)) for any permutation σ.
In particular, (1 k) = αk−2(1 2)(αk−2)−1 for k = 2, 3 . . . , n.
It follows that the subgroup H contains all transpositions of
the form (1 k). Further, for any integers 2 ≤ k < m ≤ n we
have (k m) = (1 k)(1 m)(1 k). Therefore the subgroup H

contains all transpositions.

Next, every cycle of length r ≥ 2 is a product of r − 1
transpositions. Indeed,

(x1 x2 . . . xr) = (x1 x2)(x2 x3)(x3 x4) . . . (xr−1 xr).

Hence the subgroup H contains all cycles.

Finally, every permutation in Sn is a product of cycles,
therefore it is contained in H. Thus H = Sn.



Alternating groups

Given an integer n ≥ 2, the alternating group on n symbols,
denoted An or A(n), is the set of all even permutations in the
symmetric group Sn.

Theorem The alternating group An is a subgroup

of the symmetric group Sn.

In other words, the product of even permutations is even, the
identity function is an even permutation, and the inverse of an
even permutation is even.

Theorem The alternating group An has n!/2

elements.

Proof: Consider the function F : An → Sn \ An given by
F (π) = (1 2)π. One can observe that F is bijective. Hence
the sets An and Sn \ An have the same number of elements.



Examples. • The alternating group A3 has 3
elements: the identity function and two cycles of
length 3, (1 2 3) and (1 3 2).

• The alternating group A4 has 12 elements of the

following cycle shapes: id, (1 2 3), and
(1 2)(3 4).

• The alternating group A5 has 60 elements of the

following cycle shapes: id, (1 2 3), (1 2)(3 4), and
(1 2 3 4 5).



Classical definition of the determinant

Definition. det (a) = a,
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= a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a12a21a33 − a11a23a32.

If A = (aij) is an n×n matrix then

detA =
∑

π∈Sn

sgn(π) a1,π(1) a2,π(2) . . . an,π(n),

where π runs over all permutations of {1, 2, . . . , n}.



Theorem detAT = detA.

Proof: Let A = (aij)1≤i ,j≤n. Then AT = (bij)1≤i ,j≤n, where
bij = aji . We have

detAT =
∑

π∈Sn

sgn(π) b1,π(1) b2,π(2) . . . bn,π(n)

=
∑

π∈Sn

sgn(π) aπ(1),1 aπ(2),2 . . . aπ(n),n

=
∑

π∈Sn

sgn(π) a1,π−1(1) a2,π−1(2) . . . an,π−1(n).

When π runs over all permutations of {1, 2, . . . , n}, so does
σ = π−1. It follows that

detAT =
∑

σ∈Sn

sgn(σ−1) a1,σ(1) a2,σ(2) . . . an,σ(n)

=
∑

σ∈Sn

sgn(σ) a1,σ(1) a2,σ(2) . . . an,σ(n) = detA.



Theorem 1 Suppose A is a square matrix and B is
obtained from A by exchanging two rows. Then

detB = − detA.

Theorem 2 Suppose A is a square matrix and B is

obtained from A by permuting its rows. Then
detB = detA if the permutation is even and

detB = − detA if the permutation is odd.



Proof: Let A = (aij)1≤i ,j≤n be an n×n matrix. Suppose that
a matrix B is obtained from A by permuting its rows according
to a permutation σ ∈ Sn. Then B = (bij)1≤i ,j≤n, where
bσ(i),j = aij . Equivalently, bij = aσ−1(i),j . We have

detB =
∑

π∈Sn

sgn(π) b1,π(1) b2,π(2) . . . bn,π(n)

=
∑

π∈Sn

sgn(π) aσ−1(1),π(1) aσ−1(2),π(2) . . . aσ−1(n),π(n)

=
∑

π∈Sn

sgn(π) a1,πσ(1) a2,πσ(2) . . . an,πσ(n).

When π runs over all permutations of {1, 2, . . . , n}, so does
τ = πσ. It follows that

detB =
∑

τ∈Sn

sgn(τσ−1) a1,τ(1) a2,τ(2) . . . an,τ(n)

= sgn(σ−1)
∑

τ∈Sn

sgn(τ) a1,τ(1) a2,τ(2) . . . an,τ(n) = sgn(σ) detA.



The Vandermonde determinant

Definition. The Vandermonde determinant is

the determinant of the following matrix

V =
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1 x1 x21 · · · xn−1
1

1 x2 x22 · · · xn−1
2

1 x3 x23 · · · xn−1
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...
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... . . . ...

1 xn x2n · · · xn−1
n
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,

where x1, x2, . . . , xn ∈ R. Equivalently,
V = (aij)1≤i ,j≤n, where aij = x

j−1
i .



Theorem
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x21 · · · xn−1
1

1 x2 x22 · · · xn−1
2

1 x3 x23 · · · xn−1
3

...
...

... . . . ...

1 xn x2n · · · xn−1
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

1≤i<j≤n

(xj − xi).

Corollary Consider a polynomial

p(x1, x2, . . . , xn) =
∏

1≤i<j≤n(xj − xi).

Then

p(xπ(1), xπ(2), . . . , xπ(n)) = sgn(π) p(x1, x2, . . . , xn)

for any permutation π ∈ Sn.


