MATH 415

Modern Algebra I

Lecture 12:

Cosets.

Lagrange's Theorem.

Cosets

Definition. Let H be a subgroup of a group G. A **coset** (or **left coset**) of the subgroup H in G is a set of the form $aH = \{ah \mid h \in H\}$, where $a \in G$. Similarly, a **right coset** of H in G is a set of the form $Ha = \{ha \mid h \in H\}$, where $a \in G$.

Theorem Let H be a subgroup of G and define a relation R on G by $aRb \iff a \in bH$. Then R is an equivalence relation.

Proof: We have aRb if and only if $b^{-1}a \in H$.

Reflexivity: aRa since $a^{-1}a = e \in H$.

Symmetry: $aRb \implies b^{-1}a \in H \implies a^{-1}b = (b^{-1}a)^{-1} \in H$ $\implies bRa$. **Transitivity**: aRb and $bRc \implies b^{-1}a, c^{-1}b \in H$ $\implies c^{-1}a = (c^{-1}b)(b^{-1}a) \in H \implies aRc$.

Corollary The cosets of the subgroup H in G form a partition of the set G.

Proof: Since R is an equivalence relation, its equivalence classes partition the set G. Clearly, the equivalence class of g is gH.

Examples of cosets

• $G = \mathbb{Z}$, $H = n\mathbb{Z}$.

The coset of $a \in \mathbb{Z}$ is $a + n\mathbb{Z}$, the congruence class of a modulo n (all integers b such that $b \equiv a \mod n$).

- $G = \mathbb{R}^3$, H is the plane x + 2y z = 0. H is a subgroup of G since it is a subspace. The coset of $(x_0, y_0, z_0) \in \mathbb{R}^3$ is the plane $x + 2y z = x_0 + 2y_0 z_0$ parallel to H.
 - $G = S_n$, $H = A_n$.

There are only 2 cosets, the set of even permutations A_n and the set of odd permutations $S_n \setminus A_n$.

- G is any group, H = G. There is only one coset, G.
 - G is any group, $H = \{e\}$.

Each element of G forms a separate coset.

Lagrange's Theorem

The number of elements in a group G is called the **order** of G and denoted |G|. Given a subgroup H of G, the number of cosets of H in G is called the **index** of H in G and denoted (G:H).

Theorem (Lagrange) If H is a subgroup of a finite group G, then $|G| = (G : H) \cdot |H|$. In particular, the order of H divides the order of G.

Proof: For any $a \in G$ define a function $f: H \to aH$ by f(h) = ah. By definition of aH, this function is surjective. Also, it is injective due to the left cancellation property: $f(h_1) = f(h_2) \implies ah_1 = ah_2 \implies h_1 = h_2$. Therefore f is bijective. It follows that the number of elements in the coset aH is the same as the order of the subgroup H. Since the cosets of H in G partition the set G, the theorem follows

Corollaries of Lagrange's Theorem

Corollary 1 If G is a finite group, then the order o(g) of any element $g \in G$ divides the order of G.

Proof: The order of $g \in G$ is the same as the order of the cyclic group $\langle g \rangle$, which is a subgroup of G.

Corollary 2 If G is a finite group, then $g^{|G|} = e$ for all $g \in G$.

Proof: We have $g^n = e$ whenever n is a multiple of o(g). By Corollary 1, |G| is a multiple of o(g) for all $g \in G$.

Corollary 3 Any group G of prime order p is cyclic.

Proof: Take any element $g \in G$ different from e. Then $o(g) \neq 1$, hence o(g) = p, and this is also the order of the cyclic subgroup $\langle g \rangle$. It follows that $\langle g \rangle = G$.

Corollary 4 Any group G of prime order has only two subgroups: the trivial subgroup and G itself.

Proof: If H is a subgroup of G then |H| divides |G|. Since |G| is prime, we have |H| = 1 or |H| = |G|. In the former case, H is trivial. In the latter case, H = G.

Corollary 5 The alternating group A_n , $n \ge 2$, consists of n!/2 elements.

Proof: Indeed, A_n is a subgroup of index 2 in the symmetric group S_n . The latter consists of n! elements.

Theorem Let G be a cyclic group of finite order n. Then for any divisor d of n there exists a unique subgroup of G of order d, which is also cyclic.

Proof: Let g be the generator of the cyclic group G. Take any divisor d of n. Since the order of g is n, it follows that the element $g^{n/d}$ has order d. Therefore a cyclic group $H = \langle g^{n/d} \rangle$ has order d.

Now assume H' is another subgroup of G of order d. The group H' is cyclic since G is cyclic. Hence $H' = \langle g^k \rangle$ for some $k \in \mathbb{Z}$. Since the order of the element g^k is d while the order of g is g, it follows that $\gcd(n,k) = n/d$. We know that $\gcd(n,k) = an + bk$ for some g, g is g. Then $g^{n/d} = g^{an+bk} = g^{na}g^{kb} = (g^n)^a(g^k)^b = (g^k)^b \in \langle g^k \rangle = H'$. Consequently, G is G is another G is an