MATH 415

Modern Algebra I
Lecture 12:
Cosets.
Lagrange's Theorem.

Cosets

Definition. Let H be a subgroup of a group G. A coset (or left coset) of the subgroup H in G is a set of the form $a H=\{a h \mid h \in H\}$, where $a \in G$. Similarly, a right coset of H in G is a set of the form $H a=\{h a \mid h \in H\}$, where $a \in G$.

Theorem Let H be a subgroup of G and define a relation R on G by $a R b \Longleftrightarrow a \in b H$. Then R is an equivalence relation.
Proof: We have $a R b$ if and only if $b^{-1} a \in H$.
Reflexivity: aRa since $a^{-1} a=e \in H$.
Symmetry: $a R b \Longrightarrow b^{-1} a \in H \Longrightarrow a^{-1} b=\left(b^{-1} a\right)^{-1} \in H$
$\Longrightarrow b R a$. Transitivity: $a R b$ and $b R c \Longrightarrow b^{-1} a, c^{-1} b \in H$ $\Longrightarrow c^{-1} a=\left(c^{-1} b\right)\left(b^{-1} a\right) \in H \Longrightarrow a R c$.

Corollary The cosets of the subgroup H in G form a partition of the set G.

Proof: Since R is an equivalence relation, its equivalence classes partition the set G. Clearly, the equivalence class of g is $g H$.

Examples of cosets

- $G=\mathbb{Z}, H=n \mathbb{Z}$.

The coset of $a \in \mathbb{Z}$ is $a+n \mathbb{Z}$, the congruence class of a modulo n (all integers b such that $b \equiv a \bmod n$).

- $G=\mathbb{R}^{3}, H$ is the plane $x+2 y-z=0$. H is a subgroup of G since it is a subspace. The coset of $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ is the plane $x+2 y-z=x_{0}+2 y_{0}-z_{0}$ parallel to H.
- $G=S_{n}, H=A_{n}$.

There are only 2 cosets, the set of even permutations A_{n} and the set of odd permutations $S_{n} \backslash A_{n}$.

- G is any group, $H=G$.

There is only one coset, G.

- G is any group, $H=\{e\}$.

Each element of G forms a separate coset.

Lagrange's Theorem

The number of elements in a group G is called the order of G and denoted $|G|$. Given a subgroup H of G, the number of cosets of H in G is called the index of H in G and denoted ($G: H$).

Theorem (Lagrange) If H is a subgroup of a finite group G, then $|G|=(G: H) \cdot|H|$. In particular, the order of H divides the order of G.

Proof: For any $a \in G$ define a function $f: H \rightarrow a H$ by $f(h)=a h$. By definition of $a H$, this function is surjective. Also, it is injective due to the left cancellation property: $f\left(h_{1}\right)=f\left(h_{2}\right) \Longrightarrow a h_{1}=a h_{2} \Longrightarrow h_{1}=h_{2}$.
Therefore f is bijective. It follows that the number of elements in the coset $a H$ is the same as the order of the subgroup H. Since the cosets of H in G partition the set G, the theorem follows.

Corollaries of Lagrange's Theorem

Corollary 1 If G is a finite group, then the order $o(g)$ of any element $g \in G$ divides the order of G.
Proof: The order of $g \in G$ is the same as the order of the cyclic group $\langle g\rangle$, which is a subgroup of G.

Corollary 2 If G is a finite group, then $g^{|G|}=e$ for all $g \in G$.
Proof: We have $g^{n}=e$ whenever n is a multiple of $o(g)$. By Corollary $1,|G|$ is a multiple of $o(g)$ for all $g \in G$.

Corollary 3 Any group G of prime order p is cyclic.
Proof: Take any element $g \in G$ different from e. Then $o(g) \neq 1$, hence $o(g)=p$, and this is also the order of the cyclic subgroup $\langle g\rangle$. It follows that $\langle g\rangle=G$.

Corollary 4 Any group G of prime order has only two subgroups: the trivial subgroup and G itself.

Proof: If H is a subgroup of G then $|H|$ divides $|G|$.
Since $|G|$ is prime, we have $|H|=1$ or $|H|=|G|$. In the former case, H is trivial. In the latter case, $H=G$.

Corollary 5 The alternating group $A_{n}, n \geq 2$, consists of $n!/ 2$ elements.

Proof: Indeed, A_{n} is a subgroup of index 2 in the symmetric group S_{n}. The latter consists of $n!$ elements.

Theorem Let G be a cyclic group of finite order n. Then for any divisor d of n there exists a unique subgroup of G of order d, which is also cyclic.

Proof: Let g be the generator of the cyclic group G. Take any divisor d of n. Since the order of g is n, it follows that the element $g^{n / d}$ has order d. Therefore a cyclic group $H=\left\langle g^{n / d}\right\rangle$ has order d.
Now assume H^{\prime} is another subgroup of G of order d. The group H^{\prime} is cyclic since G is cyclic. Hence $H^{\prime}=\left\langle g^{k}\right\rangle$ for some $k \in \mathbb{Z}$. Since the order of the element g^{k} is d while the order of g is n, it follows that $\operatorname{gcd}(n, k)=n / d$. We know that $\operatorname{gcd}(n, k)=a n+b k$ for some $a, b \in \mathbb{Z}$. Then $g^{n / d}=g^{a n+b k}=g^{n a} g^{k b}=\left(g^{n}\right)^{a}\left(g^{k}\right)^{b}=\left(g^{k}\right)^{b} \in\left\langle g^{k}\right\rangle=H^{\prime}$. Consequently, $H=\left\langle g^{n / d}\right\rangle \subset H^{\prime}$. However H and H^{\prime} both consist of d elements. Thus $H^{\prime}=H$.

