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Lecture 13:
Direct product of groups.
Factor groups.



Direct product of binary structures

Given nonempty sets G and H, the Cartesian product G x H
is the set of all ordered pairs (g, h) such that g € G and

h € H. Suppose % is a binary operation on G and * is a
binary operation on H. Then we can define a binary operation
e on G X H by

(&1, 1) ® (&2, h2) = (&1 * &2, 1 x h2).

Proposition 1 The operation e is fully (resp. uniquely, well)
defined if and only if both * and « are.

Proposition 2 The operation e is associative (resp.
commutative) if and only if both % and x are.

Proposition 3 A pair (eg, ey) is the identity element in

G x H if and only if e is the identity element in G and ey is
the identity element in H.

Proposition 4 (g’ H') = (g,h)™! in G x H if and only if
g =g linGand ¥ =h"1inH.



Direct product of groups

Given nonempty sets G and H, the Cartesian product G x H
is the set of all ordered pairs (g, h) such that g € G and

h € H. Suppose * is a binary operation on G and % is a
binary operation on H. Then we can define a binary operation
e on G X H by

(&1, M) ® (g2, h2) = (g1 * &2, 1 * ha).

Theorem The set G x H with the operation e is a group if
and only if both (G,*) and (H,x) are groups.

The group G x H is called the direct product of the groups
G and H. Usually the same notation (multiplicative or
additive) is used for all three groups:

(g1, h1)(g2, h2) = (8182, hih2) or
(&1, ) + (g2, h2) = (g1 + &2, 1 + ).

Similarly, we can define the direct product G; X G, x --- x G,
of any finite collection of groups Gy, G, ..., G,.



Examples.
® 1 X U3 (With ~+5 in Zy and +3 in Z3)

The group consists of 6 elements. It is abelian since Z, and
Zs3 are both abelian. The identity element is (0, 0).

Let g =(1,1). Then 2g =g+ g =(0,2), 3g =(1,0),
4g = (0,1), 5g = (1,2), and 6g = (0,0). It follows that
Zy X Zs is a cyclic group, Z, X Z3 = (g).

® 7o X Zon (With 45 in Zz)

The group consists of 4 elements. Each of the three nonzero
elements (1,0), (0,1) and (1,1) has order 2. It follows that
the direct product is not a cyclic group. Note that the sum of
any two of the three nonzero elements equals the third one.
Hence Z, x Z;, is a model of the Klein 4-group.



Theorem Let Gy, Gy, ..., G, be groups and suppose g; is an
element of finite order n; in G;, 1 < < k. Then the element
g = (81,8, --.,8«) has finite order in G; X Gy X -+ X Gi
equal to lem(ny, ma, ..., ny).

Proof: Let us use multiplicative notation for all groups.

It follows from the definition of the direct product that
g"=(gl,85,...,87) for any integer n > 0. Hence g" is the
identity element in the direct product if and only if each g/ is
the identity element in G;. For the latter, we need n to be
divisible by each n;. The least number with this property is
lem(ng, no, ..., ng).

Corollary The direct product Z,, X Zp, X -+ X Zp, is a
cyclic group if and only if the numbers ny, ny, ..., n, are
pairwise coprime.

For example, groups Zsz X Zs, Z4 X Zqs and Zp X Zs X 2
are cyclic while groups Z4 x Zg and Z, X Zo X Z3 are not.



Corollary The direct product Z,, X Zp, X -+ X Zp, is a
cyclic group if and only if the numbers ny, ny, ..., n, are
pairwise coprime.

Proof: A finite group is cyclic if and only if it has an element
of the same order as the order of the group. Consider an
arbitrary element g = (g1, 82, .. .,8k) of the direct product.
Let m; be the order of g; in the group G;, 1 </ < k. By the
theorem, the order of g equals lem(my, m,,..., my). By
Lagrange's Theorem, each m; (the order of the element g;)
divides n; (the order of the group Z,,). It follows that
lem(my, my, ..., my) divides lem(ny, ny, ..., nk). Moreover,
if g=1(1,1,...,1) then m; = n; for all i so that the order of
g is exactly lem(ny, np, ..., nk). We conclude that

lem(ny, na, ..., nk) is the largest possible order for an element
in our direct product. Thus the direct product is a cyclic
group if and only if lem(ny, ny, ..., ng) = nna ... ng, which
happens exactly when the numbers ny, ny, ..., n, are pairwise
coprime.



Factor space

Let X be a nonempty set and ~ be an equivalence relation on
X. Given an element x € X, the equivalence class of x,
denoted [x]. or simply [x], is the set of all elements of X that
are equivalent (i.e., related by ~) to x:

[x]. ={y € X |y ~x}.

Theorem Equivalence classes of the relation ~ form a
partition of the set X.

The set of all equivalence classes of ~ is denoted X/~ and
called the factor space (or quotient space) of X by the
relation ~.

In the case when the set X carries some structure (algebraic,
geometric, analytic, etc.), this structure may (or may not)
induce an analogous structure on the factor space X/~.



Examples of factor spaces

e X =G, agroup; x~ y if and only if x = yh for some
h € H, where H is a fixed subgroup.

Equivalence class of an element g € G is a left coset of the
subgroup H, [g]. = gH. The factor space G/~ is the set of
all left cosets of H in G. It is usually denoted G/H.

e X =G, agroup; x~ y if and only if x = hy for some
h € H, where H is a fixed subgroup.
Equivalence class of an element g € G is a right coset of the

subgroup H, [g]. = Hg. The factor space G/~ is the set of
all right cosets of H in G. It is often denoted H\G.

e X =G, agroup; x~y ifandonly if x € KyH = {kyh :
h € H, k € K}, where H and K are fixed subgroups.

In this example, [g]. = KgH (a double coset). The factor
space G/~ is usually denoted K\G/H.



Factor group

Let G be a nonempty set with a binary operation x. Given
an equivalence relation ~ on G, we say that the relation ~ is
compatible with the operation * if for any g1, 4>, h1, h € G,

gi~& and hy ~ hy = gyxhy ~ g *h,.

If this is the case, we can define an operation on the factor
space G/~ by [g]*[h] =[g*h] forall g,he G.
Compatibility is required so that the operation x is defined
uniquely: if [g'] = [g] and [H] = [h] then [g' x '] = [g * h].

If the operation x is associative (resp. commutative), then so
is x. If e is the identity element for %, then its equivalence
class [e] is the identity element for x. If h= g™ in (G,x),
then [h] = [g]™! in (G/~,%).

Thus, if (G, *) is a group then (G/~,x) is also a group
called the factor group (or quotient group). Moreover,

if the group (G, *) is abelian then so is (G/~,*).



Factor group

Question. When is an equivalence relation ~ on
a group G compatible with the operation?

Theorem Assume that the factor space G/~ is
also a factor group. Then

(i) H = [e]~, the equivalence class of the identity
element, is a subgroup of G,

(ii) [g]~ = gH for all g € G,

(iii) G/~= G/H,

(iv) the subgroup H is normal, which means that
gH = Hg for all g € G.

Theorem If H is a normal subgroup of a group G,
then G/H is indeed a factor group.



