MATH 415

Modern Algebra I

Lecture 13:
 Direct product of groups. Factor groups.

Direct product of binary structures

Given nonempty sets G and H, the Cartesian product $G \times H$ is the set of all ordered pairs (g, h) such that $g \in G$ and $h \in H$. Suppose $*$ is a binary operation on G and \star is a binary operation on H. Then we can define a binary operation

- on $G \times H$ by

$$
\left(g_{1}, h_{1}\right) \bullet\left(g_{2}, h_{2}\right)=\left(g_{1} * g_{2}, h_{1} \star h_{2}\right) .
$$

Proposition 1 The operation • is fully (resp. uniquely, well) defined if and only if both $*$ and \star are.
Proposition 2 The operation \bullet is associative (resp. commutative) if and only if both $*$ and \star are.
Proposition 3 A pair (e_{G}, e_{H}) is the identity element in $G \times H$ if and only if e_{G} is the identity element in G and e_{H} is the identity element in H.
Proposition $4\left(g^{\prime}, h^{\prime}\right)=(g, h)^{-1}$ in $G \times H$ if and only if $g^{\prime}=g^{-1}$ in G and $h^{\prime}=h^{-1}$ in H.

Direct product of groups

Given nonempty sets G and H, the Cartesian product $G \times H$ is the set of all ordered pairs (g, h) such that $g \in G$ and $h \in H$. Suppose $*$ is a binary operation on G and \star is a binary operation on H. Then we can define a binary operation

- on $G \times H$ by

$$
\left(g_{1}, h_{1}\right) \bullet\left(g_{2}, h_{2}\right)=\left(g_{1} * g_{2}, h_{1} \star h_{2}\right) .
$$

Theorem The set $G \times H$ with the operation \bullet is a group if and only if both $(G, *)$ and (H, \star) are groups.
The group $G \times H$ is called the direct product of the groups G and H. Usually the same notation (multiplicative or additive) is used for all three groups:

$$
\begin{aligned}
\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right) & =\left(g_{1} g_{2}, h_{1} h_{2}\right) \text { or } \\
\left(g_{1}, h_{1}\right)+\left(g_{2}, h_{2}\right) & =\left(g_{1}+g_{2}, h_{1}+h_{2}\right) .
\end{aligned}
$$

Similarly, we can define the direct product $G_{1} \times G_{2} \times \cdots \times G_{n}$ of any finite collection of groups $G_{1}, G_{2}, \ldots, G_{n}$.

Examples.

- $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ (with $+_{2}$ in \mathbb{Z}_{2} and $+_{3}$ in \mathbb{Z}_{3}).

The group consists of 6 elements. It is abelian since \mathbb{Z}_{2} and \mathbb{Z}_{3} are both abelian. The identity element is $(0,0)$. Let $g=(1,1)$. Then $2 g=g+g=(0,2), 3 g=(1,0)$, $4 g=(0,1), 5 g=(1,2)$, and $6 g=(0,0)$. It follows that $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ is a cyclic group, $\mathbb{Z}_{2} \times \mathbb{Z}_{3}=\langle g\rangle$.

- $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ (with $+_{2}$ in \mathbb{Z}_{2}).

The group consists of 4 elements. Each of the three nonzero elements $(1,0),(0,1)$ and $(1,1)$ has order 2. It follows that the direct product is not a cyclic group. Note that the sum of any two of the three nonzero elements equals the third one. Hence $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is a model of the Klein 4-group.

Theorem Let $G_{1}, G_{2}, \ldots, G_{k}$ be groups and suppose g_{i} is an element of finite order n_{i} in $G_{i}, 1 \leq i \leq k$. Then the element $g=\left(g_{1}, g_{2}, \ldots, g_{k}\right)$ has finite order in $G_{1} \times G_{2} \times \cdots \times G_{k}$ equal to $\operatorname{lcm}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.
Proof: Let us use multiplicative notation for all groups. It follows from the definition of the direct product that $g^{n}=\left(g_{1}^{n}, g_{2}^{n}, \ldots, g_{k}^{n}\right)$ for any integer $n>0$. Hence g^{n} is the identity element in the direct product if and only if each g_{i}^{n} is the identity element in G_{i}. For the latter, we need n to be divisible by each n_{i}. The least number with this property is $\operatorname{lcm}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.

Corollary The direct product $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{k}}$ is a cyclic group if and only if the numbers $n_{1}, n_{2}, \ldots, n_{k}$ are pairwise coprime.

For example, groups $\mathbb{Z}_{3} \times \mathbb{Z}_{5}, \mathbb{Z}_{4} \times \mathbb{Z}_{15}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{7}$ are cyclic while groups $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$ are not.

Corollary The direct product $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{k}}$ is a cyclic group if and only if the numbers $n_{1}, n_{2}, \ldots, n_{k}$ are pairwise coprime.

Proof: A finite group is cyclic if and only if it has an element of the same order as the order of the group. Consider an arbitrary element $g=\left(g_{1}, g_{2}, \ldots, g_{k}\right)$ of the direct product. Let m_{i} be the order of g_{i} in the group $G_{i}, 1 \leq i \leq k$. By the theorem, the order of g equals $\operatorname{lcm}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$. By Lagrange's Theorem, each m_{i} (the order of the element g_{i}) divides n_{i} (the order of the group $\mathbb{Z}_{n_{i}}$). It follows that $\operatorname{lcm}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ divides $\operatorname{lcm}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$. Moreover, if $g=(1,1, \ldots, 1)$ then $m_{i}=n_{i}$ for all i so that the order of g is exactly $\operatorname{lcm}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$. We conclude that $\operatorname{lcm}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is the largest possible order for an element in our direct product. Thus the direct product is a cyclic group if and only if $\operatorname{lcm}\left(n_{1}, n_{2}, \ldots, n_{k}\right)=n_{1} n_{2} \ldots n_{k}$, which happens exactly when the numbers $n_{1}, n_{2}, \ldots, n_{k}$ are pairwise coprime.

Factor space

Let X be a nonempty set and \sim be an equivalence relation on X. Given an element $x \in X$, the equivalence class of x, denoted $[x]_{\sim}$ or simply $[x]$, is the set of all elements of X that are equivalent (i.e., related by \sim) to x :

$$
[x]_{\sim}=\{y \in X \mid y \sim x\} .
$$

Theorem Equivalence classes of the relation \sim form a partition of the set X.

The set of all equivalence classes of \sim is denoted X / \sim and called the factor space (or quotient space) of X by the relation \sim.

In the case when the set X carries some structure (algebraic, geometric, analytic, etc.), this structure may (or may not) induce an analogous structure on the factor space X / \sim.

Examples of factor spaces

- $X=G$, a group; $x \sim y$ if and only if $x=y h$ for some $h \in H$, where H is a fixed subgroup.
Equivalence class of an element $g \in G$ is a left coset of the subgroup $H,[g]_{\sim}=g H$. The factor space G / \sim is the set of all left cosets of H in G. It is usually denoted G / H.
- $X=G$, a group; $x \sim y$ if and only if $x=$ hy for some $h \in H$, where H is a fixed subgroup.
Equivalence class of an element $g \in G$ is a right coset of the subgroup $H,[g]_{\sim}=H g$. The factor space G / \sim is the set of all right cosets of H in G. It is often denoted $H \backslash G$.
- $X=G$, a group; $x \sim y$ if and only if $x \in K y H=\{k y h$: $h \in H, k \in K\}$, where H and K are fixed subgroups. In this example, $[g]_{\sim}=K g H$ (a double coset). The factor space G / \sim is usually denoted $K \backslash G / H$.

Factor group

Let G be a nonempty set with a binary operation *. Given an equivalence relation \sim on G, we say that the relation \sim is compatible with the operation $*$ if for any $g_{1}, g_{2}, h_{1}, h_{2} \in G$,

$$
g_{1} \sim g_{2} \text { and } h_{1} \sim h_{2} \Longrightarrow g_{1} * h_{1} \sim g_{2} * h_{2} .
$$

If this is the case, we can define an operation on the factor space G / \sim by $[g] \star[h]=[g * h]$ for all $g, h \in G$. Compatibility is required so that the operation \star is defined uniquely: if $\left[g^{\prime}\right]=[g]$ and $\left[h^{\prime}\right]=[h]$ then $\left[g^{\prime} * h^{\prime}\right]=[g * h]$. If the operation $*$ is associative (resp. commutative), then so is \star. If e is the identity element for $*$, then its equivalence class $[e]$ is the identity element for $*$. If $h=g^{-1}$ in $(G, *)$, then $[h]=[g]^{-1}$ in $(G / \sim, \star)$.
Thus, if $(G, *)$ is a group then $(G / \sim, *)$ is also a group called the factor group (or quotient group). Moreover, if the group $(G, *)$ is abelian then so is $(G / \sim, \star)$.

Factor group

Question. When is an equivalence relation \sim on a group G compatible with the operation?

Theorem Assume that the factor space G / \sim is also a factor group. Then
(i) $H=[e]_{\sim}$, the equivalence class of the identity element, is a subgroup of G,
(ii) $[g]_{\sim}=g H$ for all $g \in G$,
(iii) $G / \sim=G / H$,
(iv) the subgroup H is normal, which means that $g H=H g$ for all $g \in G$.

Theorem If H is a normal subgroup of a group G, then G / H is indeed a factor group.

