MATH 415

Modern Algebra I

Lecture 14:

Factor groups (continued).
Homomorphisms of groups.

Factor group

Let G be a nonempty set with a binary operation *. Given an equivalence relation \sim on G, we say that the relation \sim is compatible with the operation $*$ if for any $g_{1}, g_{2}, h_{1}, h_{2} \in G$,

$$
g_{1} \sim g_{2} \text { and } h_{1} \sim h_{2} \Longrightarrow g_{1} * h_{1} \sim g_{2} * h_{2} .
$$

If this is the case, we can define an operation on the factor space G / \sim by $[g] \star[h]=[g * h]$ for all $g, h \in G$. Compatibility is required so that the operation \star is defined uniquely: if $\left[g^{\prime}\right]=[g]$ and $\left[h^{\prime}\right]=[h]$ then $\left[g^{\prime} * h^{\prime}\right]=[g * h]$. If the operation $*$ is associative (resp. commutative), then so is \star. If e is the identity element for $*$, then its equivalence class $[e]$ is the identity element for $*$. If $h=g^{-1}$ in $(G, *)$, then $[h]=[g]^{-1}$ in $(G / \sim, \star)$.
Thus, if $(G, *)$ is a group then $(G / \sim, *)$ is also a group called the factor group (or quotient group). Moreover, if the group $(G, *)$ is abelian then so is $(G / \sim, \star)$.

Question. When is an equivalence relation \sim on a group G compatible with the operation?

Let G be a group and assume that an equivalence relation \sim on G is compatible with the operation (so that the factor space G / \sim is also the factor group). For simplicity, let us use multiplicative notation.

Lemma 1 The equivalence class of the identity element is a subgroup of G.
Proof. Let $H=[e]_{\sim}$ be the equivalence class of the identity element e. We need to show that (i) $e \in H$, (ii) $h_{1}, h_{2} \in H$ $\Longrightarrow h_{1} h_{2} \in H$, and (iii) $h \in H \Longrightarrow h^{-1} \in H$.
By reflexivity, $e \sim e$. Hence $e \in H$. Further, if $h_{1}, h_{2} \in H$, then $h_{1} \sim e$ and $h_{2} \sim e$. By compatibility, $h_{1} h_{2} \sim e e=e$ so that $h_{1} h_{2} \in H$. Next, if $h \in H$ then $h \sim e$. Also, $h^{-1} \sim h^{-1}$. By compatibility, $h h^{-1} \sim e h^{-1}$, that is, $e \sim h^{-1}$. By symmetry, $h^{-1} \sim e$ so that $h^{-1} \in H$.

Lemma 2 Each equivalence class is a left coset of the subgroup $H=[e]_{\sim}$.
Proof. We need to prove that $[g]_{\sim}=g H$ for all $g \in G$. We are going to show that $g H \subset[g]_{\sim}$ and $[g]_{\sim} \subset g H$.
Suppose $a \in g H$, that is, $a=g h$ for some $h \in H$. Then $g \sim g$ and $h \sim e$, which implies that $g h \sim g e=g$. Hence $a \in[g]_{\sim}$. Conversely, suppose $a \in[g]_{\sim}$. We have $a=e a=\left(g g^{-1}\right) a=g\left(g^{-1} a\right)$. Since $g^{-1} \sim g^{-1}$ and $a \sim g$, it follows that $g^{-1} a \sim g^{-1} g=e$. Hence $g^{-1} a \in H$ so that $a=g\left(g^{-1} a\right) \in g H$.

Lemma 3 Each equivalence class is a right coset of the subgroup $H=[e]_{\sim}$.
Proof. Analogous to the proof of Lemma 2.
Definition. A subgroup H of a group G is called normal if $g H=H g$ for all $g \in G$, that is, each left coset of H is also a right coset. Notation: $H \triangleleft G$ or $H \unlhd G$.

Factor group

Question. When is an equivalence relation \sim on a group G compatible with the operation?

Theorem Assume that the factor space G / \sim is also a factor group. Then
(i) $H=[e]_{\sim}$, the equivalence class of the identity element, is a subgroup of G,
(ii) $[g]_{\sim}=g H$ for all $g \in G$,
(iii) $G / \sim=G / H$,
(iv) the subgroup H is normal, which means that $g H=H g$ for all $g \in G$.

Theorem If H is a normal subgroup of a group G, then G / H is indeed a factor group.

Alternative construction of the factor group

Suppose G is a group (with multiplicative notation). For any $X, Y \subset G$ let $X Y=\{x y \mid x \in X, y \in Y\}$. This "multiplication of sets" is a well-defined operation on $\mathcal{P}(G)$, the set of all subsets of G. The operation is associative: $(X Y) Z=X(Y Z)$ for any sets $X, Y, Z \subset G$. Indeed,

$$
\begin{aligned}
& (X Y) Z=\{(x y) z \mid x \in X, y \in Y, z \in Z\} \\
& X(Y Z)=\{x(y z) \mid x \in X, y \in Y, z \in Z\}
\end{aligned}
$$

Proposition If H is a normal subgroup of G, then for all $a, b \in G$ we have $(a H)(b H)=(a b) H$ in the sense of the above definition.

Alternative construction of the factor group

Suppose G is a group (with multiplicative notation). For any sets $X, Y \subset G$ let $X Y=\{x y \mid x \in X, y \in Y\}$.

Proposition If H is a normal subgroup of G, then for all $a, b \in G$ we have $(a H)(b H)=(a b) H$ in the sense of the above definition.

Proof. In terms of multiplication of sets, any coset gH can be written as $\{g\} H$. Therefore $(a H)(b H)=(\{a\} H)(\{b\} H)$. By associativity, this is the same as $\{a\}(H\{b\}) H$. Now $H\{b\}$ is the right coset $H b$. Since the subgroup H is normal, we have $H b=b H=\{b\} H$. Again by associativity,

$$
(a H)(b H)=\{a\}(\{b\} H) H=(\{a\}\{b\})(H H) .
$$

Clearly, $\{a\}\{b\}=\{a b\}$. It remains to show that $H H=H$. Indeed, $H H \subset H$ since the subgroup H is closed under the operation. Conversely, $H=\{e\} H \subset H H$.

Homomorphism of groups

Definition. Let G and H be groups. A function $f: G \rightarrow H$ is called a homomorphism of groups if $f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$.

Examples of homomorphisms:

- Residue modulo n of an integer.

For any $k \in \mathbb{Z}$ let $f(k)$ be the remainder of k under division by n. Then $f: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ is a homomorphism of the group $(\mathbb{Z},+)$ onto the group $\left(\mathbb{Z}_{n},+_{n}\right)$.

- Fractional part of a real number.

For any $x \in \mathbb{R}$ let $f(x)=\{x\}=x-\lfloor x\rfloor$ (fractional part of x). Then $f: \mathbb{R} \rightarrow[0,1)$ is a homomorphism of the group $(\mathbb{R},+)$ onto the group $\left([0,1),+_{1}\right)$.

- Sign of a permutation.

The function sgn : $S_{n} \rightarrow\{-1,1\}$ is a homomorphism of the symmetric group S_{n} onto the multiplicative group $\{-1,1\}$.

- Determinant of an invertible matrix.

The function det: $G L(n, \mathbb{R}) \rightarrow \mathbb{R} \backslash\{0\}$ is a homomorphism of the general linear $\operatorname{group} G L(n, \mathbb{R})$ onto the multiplicative group $\mathbb{R} \backslash\{0\}$.

- Linear transformation.

Any vector space is an abelian group with respect to vector addition. If $f: V_{1} \rightarrow V_{2}$ is a linear transformation between vector spaces, then f is also a homomorphism of groups.

- Trivial homomorphism.

Given groups G and H, we define $f: G \rightarrow H$ by $f(g)=e_{H}$ for all $g \in G$, where e_{H} is the identity element of H.

Properties of homomorphisms

Let $f: G \rightarrow H$ be a homomorphism of groups.

- The identity element e_{G} in G is mapped to the identity element e_{H} in H.
$f\left(e_{G}\right)=f\left(e_{G} e_{G}\right)=f\left(e_{G}\right) f\left(e_{G}\right)$. Also, $f\left(e_{G}\right)=f\left(e_{G}\right) e_{H}$. By cancellation in H, we get $f\left(e_{G}\right)=e_{H}$.
- $f\left(g^{-1}\right)=(f(g))^{-1}$ for all $g \in G$.
$f(g) f\left(g^{-1}\right)=f\left(g g^{-1}\right)=f\left(e_{G}\right)=e_{H}$. Similarly, $f\left(g^{-1}\right) f(g)=e_{H}$. Thus $f\left(g^{-1}\right)=(f(g))^{-1}$.
- $f\left(g^{n}\right)=(f(g))^{n}$ for all $g \in G$ and $n \in \mathbb{Z}$.
- The order of $f(g)$ divides the order of g.

Indeed, $g^{n}=e_{G} \Longrightarrow(f(g))^{n}=e_{H}$ for any $n \in \mathbb{N}$.

Properties of homomorphisms

Let $f: G \rightarrow H$ be a homomorphism of groups.

- If K is a subgroup of G, then $f(K)$ is a subgroup of H.
- If L is a subgroup of H, then $f^{-1}(L)$ is a subgroup of G.
- If L is a normal subgroup of H, then $f^{-1}(L)$ is a normal subgroup of G.
- $f^{-1}\left(e_{H}\right)$ is a normal subgroup of G called the kernel of f and denoted $\operatorname{Ker}(f)$.

