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Lecture 14:
Factor groups (continued).
Homomorphisms of groups.



Factor group

Let G be a nonempty set with a binary operation x. Given
an equivalence relation ~ on G, we say that the relation ~ is
compatible with the operation * if for any g1, 4>, h1, h € G,

gi~& and hy ~ hy = gyxhy ~ g *h,.

If this is the case, we can define an operation on the factor
space G/~ by [g]*[h] =[g*h] forall g,he G.
Compatibility is required so that the operation x is defined
uniquely: if [g'] = [g] and [H] = [h] then [g' x '] = [g * h].

If the operation x is associative (resp. commutative), then so
is x. If e is the identity element for %, then its equivalence
class [e] is the identity element for x. If h= g™ in (G,x),
then [h] = [g]™! in (G/~,%).

Thus, if (G, *) is a group then (G/~,x) is also a group
called the factor group (or quotient group). Moreover,

if the group (G, *) is abelian then so is (G/~,*).



Question. When is an equivalence relation ~ on a group G
compatible with the operation?

Let G be a group and assume that an equivalence relation ~
on G is compatible with the operation (so that the factor
space G/~ is also the factor group). For simplicity, let us
use multiplicative notation.

Lemma 1 The equivalence class of the identity element is a
subgroup of G.

Proof. Let H = [e]. be the equivalence class of the identity
element e. We need to show that (i) e € H, (ii) h;,h. € H
= hhy€H, and (ii) he H = hleH

By reflexivity, e ~ e. Hence e € H. Further, if hy, h, € H,
then hy ~ e and h, ~ e. By compatibility, hih, ~ ee = e
so that hihy € H. Next, if h€ H then h~ e. Also,

h=! ~ h~1. By compatibility, hh=! ~ eh™!, thatis, e ~ h™1.
By symmetry, h™! ~ e so that h™! € H.



Lemma 2 Each equivalence class is a left coset of the
subgroup H = [e]..

Proof. We need to prove that [g]. = gH for all g € G. We
are going to show that gH C [g]. and [g]. C gH.

Suppose a € gH, thatis, a = gh for some h€ H. Then

g ~ g and h ~ e, which implies that gh ~ ge = g. Hence
a € [g].. Conversely, suppose a € [g].. We have
a=ea=(gg a=g(gta). Since gl~g!and a~g,
it follows that g7 la~ g7 lg =e. Hence g7'a € H so that
a=g(gta) e gH.

Lemma 3 Each equivalence class is a right coset of the
subgroup H = [e]..

Proof. Analogous to the proof of Lemma 2.

Definition. A subgroup H of a group G is called normal if

gH = Hg for all g € G, that is, each left coset of H is also a
right coset. Notation: H< G or H < G.



Factor group

Question. When is an equivalence relation ~ on
a group G compatible with the operation?

Theorem Assume that the factor space G/~ is
also a factor group. Then

(i) H = [e]~, the equivalence class of the identity
element, is a subgroup of G,

(ii) [g]~ = gH for all g € G,

(iii) G/~= G/H,

(iv) the subgroup H is normal, which means that
gH = Hg for all g € G.

Theorem If H is a normal subgroup of a group G,
then G/H is indeed a factor group.



Alternative construction of the factor group

Suppose G is a group (with multiplicative notation).
Forany X, Y C G let XY ={xy|xe X, ye Y}
This “multiplication of sets” is a well-defined
operation on P(G), the set of all subsets of G.
The operation is associative: (XY)Z = X(YZ) for
any sets X,Y,Z C G. Indeed,

(XY)Z ={(xy)z|xeX,yeY,ze Z},
X(YZ)={x(yz) | xeX,ye Y, ze Z}.

Proposition If H is a normal subgroup of G, then
for all a,b € G we have (aH)(bH) = (ab)H in the
sense of the above definition.



Alternative construction of the factor group

Suppose G is a group (with multiplicative notation). For any
sets X, Y C G let XY ={xy|xeX, yeVY}

Proposition If H is a normal subgroup of G, then for all
a,b € G we have (aH)(bH) = (ab)H in the sense of the
above definition.

Proof. In terms of multiplication of sets, any coset gH can be
written as {g}H. Therefore (aH)(bH) = ({a}H)({b}H).

By associativity, this is the same as {a}(H{b})H. Now
H{b} is the right coset Hb. Since the subgroup H is normal,
we have Hb = bH = {b}H. Again by associativity,

(aH)(bH) = {a}({b}H)H = ({a}{b})(HH).
Clearly, {a}{b} = {ab}. It remains to show that HH = H.

Indeed, HH C H since the subgroup H is closed under the
operation. Conversely, H = {e}H C HH.



Homomorphism of groups

Definition. Let G and H be groups. A function
f: G — H is called a homomorphism of groups

if f(g1g2) = f(g1)f(g2) forall g1,4 € G.

Examples of homomorphisms:

e Residue modulo n of an integer.

For any k € Z let f(k) be the remainder of k under division
by n. Then f :Z — Z, is a homomorphism of the group
(Z,+) onto the group (Z,, +,).

e Fractional part of a real number.

For any x € R let f(x) = {x} = x — | x] (fractional part of
x). Then f:R —[0,1) is a homomorphism of the group
(R, +) onto the group ([0,1),+1).



e Sign of a permutation.

The function sgn : S, — {—1,1} is a homomorphism of the
symmetric group S, onto the multiplicative group {—1,1}.
e Determinant of an invertible matrix.

The function det : GL(n,R) — R\ {0} is a homomorphism
of the general linear group GL(n,R) onto the multiplicative

group R\ {0}.
e Linear transformation.

Any vector space is an abelian group with respect to vector
addition. If f: V] — V, is a linear transformation between
vector spaces, then f is also a homomorphism of groups.

e Trivial homomorphism.

Given groups G and H, we define f: G — H by f(g) = ey
for all g € G, where ey is the identity element of H.



Properties of homomorphisms

Let f: G — H be a homomorphism of groups.

e The identity element eg in G is mapped to the
identity element ey in H.

f(eg) = f(eceg) = f(eg)f(eg). Also, f(eg) = f(eg)en.
By cancellation in H, we get f(eg) = en.
o f(g7!)=(f(g))! forall g€ G.

f(g)f(g?) = f(gg™) = f(ec) = ew. Similarly,
flg7)f(g) =en. Thus f(g™t) = (f(g))*

o f(g")=(f(g))" forall ge G and ne Z.

e The order of f(g) divides the order of g.
Indeed, g" =ec = (f(g))" = ey for any ne N.



Properties of homomorphisms

Let f: G — H be a homomorphism of groups.
e If K is a subgroup of G, then f(K) is a
subgroup of H.

o If L is a subgroup of H, then f~1(L) is a
subgroup of G.

e If Lis a normal subgroup of H, then f~1(L) is a
normal subgroup of G.

e f1(ey) is a normal subgroup of G called the
kernel of f and denoted Ker(f).



