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Modern Algebra I

Lecture 14:
Factor groups (continued).

Homomorphisms of groups.



Factor group

Let G be a nonempty set with a binary operation ∗. Given
an equivalence relation ∼ on G , we say that the relation ∼ is
compatible with the operation ∗ if for any g1, g2, h1, h2 ∈ G ,

g1 ∼ g2 and h1 ∼ h2 =⇒ g1 ∗ h1 ∼ g2 ∗ h2.

If this is the case, we can define an operation on the factor
space G/∼ by [g ] ⋆ [h] = [g ∗ h] for all g , h ∈ G .
Compatibility is required so that the operation ⋆ is defined
uniquely: if [g ′] = [g ] and [h′] = [h] then [g ′ ∗ h′] = [g ∗ h].

If the operation ∗ is associative (resp. commutative), then so
is ⋆. If e is the identity element for ∗, then its equivalence
class [e] is the identity element for ⋆. If h = g−1 in (G , ∗),
then [h] = [g ]−1 in (G/∼, ⋆).

Thus, if (G , ∗) is a group then (G/∼, ⋆) is also a group
called the factor group (or quotient group). Moreover,
if the group (G , ∗) is abelian then so is (G/∼, ⋆).



Question. When is an equivalence relation ∼ on a group G

compatible with the operation?

Let G be a group and assume that an equivalence relation ∼
on G is compatible with the operation (so that the factor
space G/∼ is also the factor group). For simplicity, let us
use multiplicative notation.

Lemma 1 The equivalence class of the identity element is a
subgroup of G .

Proof. Let H = [e]∼ be the equivalence class of the identity
element e. We need to show that (i) e ∈ H, (ii) h1, h2 ∈ H

=⇒ h1h2 ∈ H, and (iii) h ∈ H =⇒ h−1 ∈ H.

By reflexivity, e ∼ e. Hence e ∈ H. Further, if h1, h2 ∈ H,
then h1 ∼ e and h2 ∼ e. By compatibility, h1h2 ∼ ee = e

so that h1h2 ∈ H. Next, if h ∈ H then h ∼ e. Also,
h−1 ∼ h−1. By compatibility, hh−1 ∼ eh−1, that is, e ∼ h−1.
By symmetry, h−1 ∼ e so that h−1 ∈ H.



Lemma 2 Each equivalence class is a left coset of the
subgroup H = [e]∼.

Proof. We need to prove that [g ]∼ = gH for all g ∈ G . We
are going to show that gH ⊂ [g ]∼ and [g ]∼ ⊂ gH.

Suppose a ∈ gH, that is, a = gh for some h ∈ H. Then
g ∼ g and h ∼ e, which implies that gh ∼ ge = g . Hence
a ∈ [g ]∼. Conversely, suppose a ∈ [g ]∼. We have
a = ea = (gg−1)a = g(g−1a). Since g−1 ∼ g−1 and a ∼ g ,
it follows that g−1a ∼ g−1g = e. Hence g−1a ∈ H so that
a = g(g−1a) ∈ gH.

Lemma 3 Each equivalence class is a right coset of the
subgroup H = [e]∼.

Proof. Analogous to the proof of Lemma 2.

Definition. A subgroup H of a group G is called normal if
gH = Hg for all g ∈ G , that is, each left coset of H is also a
right coset. Notation: H ⊳ G or H E G .



Factor group

Question. When is an equivalence relation ∼ on

a group G compatible with the operation?

Theorem Assume that the factor space G/∼ is
also a factor group. Then

(i) H = [e]∼, the equivalence class of the identity
element, is a subgroup of G ,
(ii) [g ]∼ = gH for all g ∈ G ,

(iii) G/∼ = G/H ,
(iv) the subgroup H is normal, which means that

gH = Hg for all g ∈ G .

Theorem If H is a normal subgroup of a group G ,
then G/H is indeed a factor group.



Alternative construction of the factor group

Suppose G is a group (with multiplicative notation).
For any X ,Y ⊂ G let XY = {xy | x ∈ X , y ∈ Y }.

This “multiplication of sets” is a well-defined
operation on P(G ), the set of all subsets of G .
The operation is associative: (XY )Z = X (YZ ) for

any sets X ,Y ,Z ⊂ G . Indeed,

(XY )Z = {(xy)z | x ∈ X , y ∈ Y , z ∈ Z},

X (YZ ) = {x(yz) | x ∈ X , y ∈ Y , z ∈ Z}.

Proposition If H is a normal subgroup of G , then
for all a, b ∈ G we have (aH)(bH) = (ab)H in the
sense of the above definition.



Alternative construction of the factor group

Suppose G is a group (with multiplicative notation). For any
sets X ,Y ⊂ G let XY = {xy | x ∈ X , y ∈ Y }.

Proposition If H is a normal subgroup of G , then for all
a, b ∈ G we have (aH)(bH) = (ab)H in the sense of the
above definition.

Proof. In terms of multiplication of sets, any coset gH can be
written as {g}H. Therefore (aH)(bH) = ({a}H)({b}H).
By associativity, this is the same as {a}(H{b})H. Now
H{b} is the right coset Hb. Since the subgroup H is normal,
we have Hb = bH = {b}H. Again by associativity,

(aH)(bH) = {a}({b}H)H = ({a}{b})(HH).

Clearly, {a}{b} = {ab}. It remains to show that HH = H.
Indeed, HH ⊂ H since the subgroup H is closed under the
operation. Conversely, H = {e}H ⊂ HH.



Homomorphism of groups

Definition. Let G and H be groups. A function
f : G → H is called a homomorphism of groups

if f (g1g2) = f (g1)f (g2) for all g1, g2 ∈ G .

Examples of homomorphisms:

• Residue modulo n of an integer.

For any k ∈ Z let f (k) be the remainder of k under division
by n. Then f : Z → Zn is a homomorphism of the group
(Z,+) onto the group (Zn,+n).

• Fractional part of a real number.

For any x ∈ R let f (x) = {x} = x − ⌊x⌋ (fractional part of
x). Then f : R → [0, 1) is a homomorphism of the group
(R,+) onto the group ([0, 1),+1).



• Sign of a permutation.

The function sgn : Sn → {−1, 1} is a homomorphism of the
symmetric group Sn onto the multiplicative group {−1, 1}.

• Determinant of an invertible matrix.

The function det : GL(n,R) → R \ {0} is a homomorphism
of the general linear group GL(n,R) onto the multiplicative
group R \ {0}.

• Linear transformation.

Any vector space is an abelian group with respect to vector
addition. If f : V1 → V2 is a linear transformation between
vector spaces, then f is also a homomorphism of groups.

• Trivial homomorphism.

Given groups G and H, we define f : G → H by f (g) = eH
for all g ∈ G , where eH is the identity element of H.



Properties of homomorphisms

Let f : G → H be a homomorphism of groups.

• The identity element eG in G is mapped to the
identity element eH in H .

f (eG ) = f (eGeG ) = f (eG )f (eG ). Also, f (eG ) = f (eG )eH .
By cancellation in H, we get f (eG ) = eH .

• f (g−1) = (f (g))−1 for all g ∈ G .

f (g)f (g−1) = f (gg−1) = f (eG ) = eH . Similarly,
f (g−1)f (g) = eH . Thus f (g−1) = (f (g))−1.

• f (g n) = (f (g))n for all g ∈ G and n ∈ Z.

• The order of f (g) divides the order of g .

Indeed, g n = eG =⇒ (f (g))n = eH for any n ∈ N.



Properties of homomorphisms

Let f : G → H be a homomorphism of groups.

• If K is a subgroup of G , then f (K ) is a
subgroup of H .

• If L is a subgroup of H , then f −1(L) is a

subgroup of G .

• If L is a normal subgroup of H , then f −1(L) is a
normal subgroup of G .

• f −1(eH) is a normal subgroup of G called the
kernel of f and denoted Ker(f ).


