MATH 415 Modern Algebra I

Lecture 14: Factor groups (continued). Homomorphisms of groups.

Factor group

Let *G* be a nonempty set with a binary operation *. Given an equivalence relation \sim on *G*, we say that the relation \sim is **compatible** with the operation * if for any $g_1, g_2, h_1, h_2 \in G$,

$$g_1 \sim g_2$$
 and $h_1 \sim h_2 \implies g_1 * h_1 \sim g_2 * h_2$

If this is the case, we can define an operation on the factor space G/\sim by $[g] \star [h] = [g \star h]$ for all $g, h \in G$. Compatibility is required so that the operation \star is defined uniquely: if [g'] = [g] and [h'] = [h] then $[g' \star h'] = [g \star h]$. If the operation \star is associative (resp. commutative), then so is \star . If *e* is the identity element for \star , then its equivalence class [e] is the identity element for \star . If $h = g^{-1}$ in (G, \star) , then $[h] = [g]^{-1}$ in $(G/\sim, \star)$.

Thus, if (G, *) is a group then $(G/\sim, *)$ is also a group called the **factor group** (or **quotient group**). Moreover, if the group (G, *) is abelian then so is $(G/\sim, *)$.

Question. When is an equivalence relation \sim on a group *G* compatible with the operation?

Let G be a group and assume that an equivalence relation \sim on G is compatible with the operation (so that the factor space G/\sim is also the factor group). For simplicity, let us use multiplicative notation.

Lemma 1 The equivalence class of the identity element is a subgroup of G.

Proof. Let $H = [e]_{\sim}$ be the equivalence class of the identity element e. We need to show that (i) $e \in H$, (ii) $h_1, h_2 \in H$ $\implies h_1h_2 \in H$, and (iii) $h \in H \implies h^{-1} \in H$. By reflexivity, $e \sim e$. Hence $e \in H$. Further, if $h_1, h_2 \in H$, then $h_1 \sim e$ and $h_2 \sim e$. By compatibility, $h_1h_2 \sim ee = e$ so that $h_1h_2 \in H$. Next, if $h \in H$ then $h \sim e$. Also, $h^{-1} \sim h^{-1}$. By compatibility, $hh^{-1} \sim eh^{-1}$, that is, $e \sim h^{-1}$. By symmetry, $h^{-1} \sim e$ so that $h^{-1} \in H$. **Lemma 2** Each equivalence class is a left coset of the subgroup $H = [e]_{\sim}$.

Proof. We need to prove that $[g]_{\sim} = gH$ for all $g \in G$. We are going to show that $gH \subset [g]_{\sim}$ and $[g]_{\sim} \subset gH$. Suppose $a \in gH$, that is, a = gh for some $h \in H$. Then $g \sim g$ and $h \sim e$, which implies that $gh \sim ge = g$. Hence $a \in [g]_{\sim}$. Conversely, suppose $a \in [g]_{\sim}$. We have $a = ea = (gg^{-1})a = g(g^{-1}a)$. Since $g^{-1} \sim g^{-1}$ and $a \sim g$, it follows that $g^{-1}a \sim g^{-1}g = e$. Hence $g^{-1}a \in H$ so that $a = g(g^{-1}a) \in gH$.

Lemma 3 Each equivalence class is a right coset of the subgroup $H = [e]_{\sim}$.

Proof. Analogous to the proof of Lemma 2.

Definition. A subgroup H of a group G is called **normal** if gH = Hg for all $g \in G$, that is, each left coset of H is also a right coset. *Notation:* $H \triangleleft G$ or $H \trianglelefteq G$.

Factor group

Question. When is an equivalence relation \sim on a group *G* compatible with the operation?

Theorem Assume that the factor space G/\sim is also a factor group. Then (i) $H = [e]_{\sim}$, the equivalence class of the identity element, is a subgroup of G, (ii) $[g]_{\sim} = gH$ for all $g \in G$, (iii) $G/\sim = G/H$, (iv) the subgroup H is **normal**, which means that gH = Hg for all $g \in G$.

Theorem If *H* is a normal subgroup of a group *G*, then G/H is indeed a factor group.

Alternative construction of the factor group

Suppose G is a group (with multiplicative notation). For any $X, Y \subset G$ let $XY = \{xy \mid x \in X, y \in Y\}$. This "multiplication of sets" is a well-defined operation on $\mathcal{P}(G)$, the set of all subsets of G. The operation is associative: (XY)Z = X(YZ) for any sets $X, Y, Z \subset G$. Indeed, $(XY)Z = \{(xy)z \mid x \in X, y \in Y, z \in Z\}$,

 $X(YZ) = \{x(yz) \mid x \in X, y \in Y, z \in Z\}.$

Proposition If *H* is a normal subgroup of *G*, then for all $a, b \in G$ we have (aH)(bH) = (ab)H in the sense of the above definition.

Alternative construction of the factor group

Suppose G is a group (with multiplicative notation). For any sets $X, Y \subset G$ let $XY = \{xy \mid x \in X, y \in Y\}$.

Proposition If *H* is a normal subgroup of *G*, then for all $a, b \in G$ we have (aH)(bH) = (ab)H in the sense of the above definition.

Proof. In terms of multiplication of sets, any coset gH can be written as $\{g\}H$. Therefore $(aH)(bH) = (\{a\}H)(\{b\}H)$. By associativity, this is the same as $\{a\}(H\{b\})H$. Now $H\{b\}$ is the right coset Hb. Since the subgroup H is normal, we have $Hb = bH = \{b\}H$. Again by associativity,

$$(aH)(bH) = \{a\}(\{b\}H)H = (\{a\}\{b\})(HH).$$

Clearly, $\{a\}\{b\} = \{ab\}$. It remains to show that HH = H. Indeed, $HH \subset H$ since the subgroup H is closed under the operation. Conversely, $H = \{e\}H \subset HH$.

Homomorphism of groups

Definition. Let G and H be groups. A function $f: G \to H$ is called a **homomorphism** of groups if $f(g_1g_2) = f(g_1)f(g_2)$ for all $g_1, g_2 \in G$.

Examples of homomorphisms:

• Residue modulo *n* of an integer.

For any $k \in \mathbb{Z}$ let f(k) be the remainder of k under division by n. Then $f : \mathbb{Z} \to \mathbb{Z}_n$ is a homomorphism of the group $(\mathbb{Z}, +)$ onto the group $(\mathbb{Z}_n, +_n)$.

• Fractional part of a real number.

For any $x \in \mathbb{R}$ let $f(x) = \{x\} = x - \lfloor x \rfloor$ (fractional part of x). Then $f : \mathbb{R} \to [0, 1)$ is a homomorphism of the group $(\mathbb{R}, +)$ onto the group $([0, 1), +_1)$.

• Sign of a permutation.

The function $sgn : S_n \to \{-1, 1\}$ is a homomorphism of the symmetric group S_n onto the multiplicative group $\{-1, 1\}$.

• Determinant of an invertible matrix.

The function det : $GL(n, \mathbb{R}) \to \mathbb{R} \setminus \{0\}$ is a homomorphism of the general linear group $GL(n, \mathbb{R})$ onto the multiplicative group $\mathbb{R} \setminus \{0\}$.

• Linear transformation.

Any vector space is an abelian group with respect to vector addition. If $f: V_1 \rightarrow V_2$ is a linear transformation between vector spaces, then f is also a homomorphism of groups.

• Trivial homomorphism.

Given groups G and H, we define $f : G \to H$ by $f(g) = e_H$ for all $g \in G$, where e_H is the identity element of H.

Properties of homomorphisms

Let $f : G \to H$ be a homomorphism of groups.

• The identity element e_G in G is mapped to the identity element e_H in H.

 $f(e_G) = f(e_G e_G) = f(e_G)f(e_G)$. Also, $f(e_G) = f(e_G)e_H$. By cancellation in H, we get $f(e_G) = e_H$.

•
$$f(g^{-1}) = (f(g))^{-1}$$
 for all $g \in G$.
 $f(g)f(g^{-1}) = f(gg^{-1}) = f(e_G) = e_H$. Similarly,
 $f(g^{-1})f(g) = e_H$. Thus $f(g^{-1}) = (f(g))^{-1}$.

• $f(g^n) = (f(g))^n$ for all $g \in G$ and $n \in \mathbb{Z}$.

• The order of f(g) divides the order of g. Indeed, $g^n = e_G \implies (f(g))^n = e_H$ for any $n \in \mathbb{N}$.

Properties of homomorphisms

Let $f: G \to H$ be a homomorphism of groups.

• If K is a subgroup of G, then f(K) is a subgroup of H.

• If L is a subgroup of H, then $f^{-1}(L)$ is a subgroup of G.

• If L is a normal subgroup of H, then $f^{-1}(L)$ is a normal subgroup of G.

• $f^{-1}(e_H)$ is a normal subgroup of G called the **kernel** of f and denoted Ker(f).