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Isomorphisms of groups.



Isomorphism of groups
Definition. Let G and H be groups. A function f : G → H

is called an isomorphism of groups if it is bijective and
f (g1g2) = f (g1)f (g2) for all g1, g2 ∈ G . In other words, an
isomorphism is a bijective homomorphism.

The group G is said to be isomorphic to H if there exists an
isomorphism f : G → H. Notation: G ∼= H.

Theorem Isomorphism is an equivalence relation on groups.

Sketch of the proof. The identity map on a group is an
isomorphism. The inverse map of an isomorphism is also an
isomorphism, and so is the composition of two isomorphisms.

Theorem The following features of groups are preserved
under isomorphisms: (i) the number of elements, (ii) the
number of elements of a particular order, (iii) being abelian,
(iv) being cyclic, (v) having a subgroup of a particular order
or particular index.



Examples of isomorphic groups

• (R,+) and (R+, ·).

An isomorphism f : R → R+ is given by f (x) = ex .

•
(

[0, t),+t

)

and
(

[0, s),+s

)

, where t, s > 0.

An isomorphism f : [0, t) → [0, s) is given by f (x) = s(x/t)
for all x ∈ [0, t).

• Any two cyclic groups 〈g〉 and 〈h〉 of the same
order.

An isomorphism f : 〈g〉 → 〈h〉 is given by f (g n) = hn for all
n ∈ Z.

• Z6 and Z2 × Z3.

Both groups are cyclic groups of order 6.



Isomorphisms of direct products of groups

• If G1
∼= H1 and G2

∼= H2, then G1 × G2
∼= H1 × H2.

If f1 :G1→H1 and f2 :G2→H2 are isomorphisms, then a map
f : G1 × G2 → H1 × H2 given by f (g1, g2) = (f1(g1), f2(g2))
for all g1 ∈ G1 and g2 ∈ G2 is also an isomorphism.

• G × H ∼= H × G .

An isomorphism f : G × H → H × G is given by
f (g , h) = (h, g) for all g ∈ G and h ∈ H.

• (G × H)× K ∼= G × H × K ∼= G × (H × K ).

Isomorphisms f1 : G × H × K → (G × H)× K and
f2 : G × H × K → G × (H × K ) are given by
f1(g , h, k) = ((g , h), k) and f2(g , h, k) = (g , (h, k)).

• {e} × G ∼= G × {e} ∼= G .

Isomorphisms f1 : G → {e} × G and f2 : G → G × {e} are
given by f1(g) = (e, g) and f2(g) = (g , e) for all g ∈ G .



Fundamental Theorem on Homomorphisms Given a
homomorphism f : G → H, the factor group G/Ker(f ) is
isomorphic to f (G ).

Proof. Let K denote the kernel Ker(f ) of the homomorphism
f . We define a map φ : G/K → f (G ) by φ(gK ) = f (g) for
all g ∈ G . To verify that φ(gK ) is determined uniquely, we
need to show that g ′K = gK =⇒ f (g ′) = f (g). Indeed, if
the cosets g ′K and gK are the same then g ′ = gk for some
k ∈ K . Hence f (g ′) = f (gk) = f (g)f (k) = f (g)eH = f (g).

The fact that φ is a homomorphism of groups will follow from
the definition of the factor group. For any cosets g1K and
g2K of the subgroup K , we have φ

(

(g1K )(g2K )
)

=
φ(g1g2K ) = f (g1g2) = f (g1)f (g2) = φ(g1K )φ(g2K ).

By construction, φ is surjective. To prove injectivity, we need
to show that f (g ′) = f (g) =⇒ g ′K = gK . Let a = g−1g ′.
If f (g ′) = f (g) then f (a) = f (g−1)f (g ′) = (f (g))−1f (g ′)
= (f (g))−1f (g) = eH . Hence a ∈ K . Consequently,
g ′ = ga ∈ gK so that g ′K = gK . Thus φ is bijective.



Examples

• f : Z → Zn, given by f (k) = k mod n.

The kernel of the homomorphism f is the subgroup nZ; the
image is the entire group Zn. Hence Zn

∼= Z/nZ.

• f : R → C \ {0}, given by f (x) = e2πix .

The kernel of the homomorphism f is Z; the image is the
multiplicative group of all complex numbers of absolute value
1. Hence the latter is isomorphic to the factor group R/Z.

• f : GL(n,R) → R \ {0}, given by f (M) = detM .

The kernel of the homomorphism f is the special linear group
SL(n,R); the image is the entire multiplicative group R \ {0}.
Hence SL(n,R) is a normal subgroup of GL(n,R) and
GL(n,R)/SL(n,R) ∼= R \ {0}.



Examples of non-isomorphic groups

• S3 and Z7.

S3 has order 6 while Z7 has order 7.

• S3 and Z6.

Z6 is abelian while S3 is not.

• Z and Z× Z.

Z is cyclic while Z× Z is not.

• Z× Z and Q.

Z×Z is generated by two elements (1, 0) and (0, 1) while Q

cannot be generated by a finite set.



• (R,+) and (R \ {0}, ·).

(R \ {0}, ·) has an element of order 2, namely, −1. In
(R,+), every element different from 0 has infinite order.

• Z× Z3 and Z× Z.

Z× Z3 has an element of finite order different from the
identity element, e.g., (0, 1), while Z× Z does not.

• Z8, Z4 × Z2 and Z2 × Z2 × Z2.

Orders of elements in Z8: 1, 2, 4 and 8; in Z4 ×Z2: 1, 2 and
4; in Z2 × Z2 × Z2: only 1 and 2.

• Z4 × Z4 × Z2 and Z4 × Z2 × Z2 × Z2.

Both groups have elements of order 1, 2 and 4. However
Z4 × Z4 × Z2 has 23 − 1 = 7 elements of order 2 while
Z4 × Z2 × Z2 × Z2 has 24 − 1 = 15.


