MATH 415 Modern Algebra I

Lecture 17: Transformation groups.

Transformation groups

Definition. A transformation group is a group where elements are bijective transformations of a fixed set X and the operation is composition.

Examples.

- Symmetric group S_X : all bijective functions $f: X \to X$.
- Translations of the real line: $T_c(x) = x + c$, $x \in \mathbb{R}$.

• Homeo(\mathbb{R}): the group of all invertible functions $f : \mathbb{R} \to \mathbb{R}$ such that both f and f^{-1} are continuous (such functions are called **homeomorphisms**).

• $Homeo^+(\mathbb{R})$: the group of all increasing functions in $Homeo(\mathbb{R})$ (those that preserve orientation of the real line).

• Diff(\mathbb{R}): the group of all invertible functions $f : \mathbb{R} \to \mathbb{R}$ such that both f and f^{-1} are continuously differentiable (such functions are called **diffeomorphisms**).

Groups of symmetries

Definition. A transformation $f : \mathbb{R}^n \to \mathbb{R}^n$ is called a **motion** (or a **rigid motion**) if it preserves distances between points.

Theorem All motions of \mathbb{R}^n form a transformation group. Any motion $f : \mathbb{R}^n \to \mathbb{R}^n$ can be represented as $f(\mathbf{x}) = A\mathbf{x} + \mathbf{x}_0$, where $\mathbf{x}_0 \in \mathbb{R}^n$ and A is an orthogonal matrix $(A^T A = AA^T = I)$.

Given a geometric figure $F \subset \mathbb{R}^n$, a symmetry of F is a motion of \mathbb{R}^n that preserves F. All symmetries of F form a transformation group.

Example. • The **dihedral group** D_n is the group of symmetries of a regular *n*-gon. It consists of 2n elements: *n* reflections, n-1 rotations by angles $2\pi k/n$, k = 1, 2, ..., n-1, and the identity function.

Equlateral triangle

Any symmetry of a polygon maps vertices to vertices. Therefore it induces a permutation on the set of vertices. Moreover, the symmetry is uniquely recovered from the permutation.

In the case of the equilateral triangle, any permutation of vertices comes from a symmetry.

Square

In the case of the square, not every permutation of vertices comes from a symmetry of the square. The reason is that a symmetry must map adjacent vertices to adjacent vertices.

Regular tetrahedron

Any symmetry of a polyhedron maps vertices to vertices. In the case of the regular tetrahedron, any permutation of vertices comes from a symmetry.

Let $R_{\alpha}: S^1 \to S^1$ be the rotation of the circle S^1 by angle $\alpha \in \mathbb{R}$. All rotations R_{α} , $\alpha \in \mathbb{R}$ form a transformation group. Namely, $R_{\alpha}R_{\beta} = R_{\alpha+\beta}$, $R_{\alpha}^{-1} = R_{-\alpha}$, and $R_0 = \mathrm{id}$.

The group of rotations is a subgroup of the group of all symmetries of the circle (the other symmetries are reflections).

Group of automorphisms

Definition. Any isomorphism of a group G onto itself is called an **automorphism** of G.

Automorphisms are "symmetries" of the group as an algebraic structure. All automorphisms of a given group G form a transformation group denoted Aut(G).

Example. • Conjugation.

Take any $g \in G$ and define a map $i_g : G \to G$ by $i_g(x) = gxg^{-1}$ for all $x \in G$. Then $i_g(xy) = g(xy)g^{-1}$ $= gx(g^{-1}g)yg^{-1} = (gxg^{-1})(gyg^{-1}) = i_g(x)i_g(y)$. Hence i_g is a homomorphism. Further, $i_g(i_h(x)) = i_g(hxh^{-1})$ $= g(hxh^{-1})g^{-1} = (gh)x(gh)^{-1} = i_{gh}(x)$. Hence $i_g \circ i_h = i_{gh}$ for all $g, h \in G$. In particular, $i_g \circ i_{g^{-1}} = i_{g^{-1}} \circ i_g = i_e = id_G$. Therefore $i_{g^{-1}} = (i_g)^{-1}$ so that i_g is bijective.

Automorphisms of the form i_g are called **inner**. They form a group Inn(G), which is a normal subgroup of Aut(G).