MATH 415
Modern Algebra I

Lecture 17:
 Transformation groups.

Transformation groups

Definition. A transformation group is a group where elements are bijective transformations of a fixed set X and the operation is composition.

Examples.

- Symmetric group S_{X} : all bijective functions $f: X \rightarrow X$.
- Translations of the real line: $T_{c}(x)=x+c, x \in \mathbb{R}$.
- Homeo($\mathbb{R})$: the group of all invertible functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that both f and f^{-1} are continuous (such functions are called homeomorphisms).
- $\operatorname{Homeo}^{+}(\mathbb{R})$: the group of all increasing functions in $\operatorname{Homeo}(\mathbb{R})$ (those that preserve orientation of the real line).
- Diff (\mathbb{R}) : the group of all invertible functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that both f and f^{-1} are continuously differentiable (such functions are called diffeomorphisms).

Groups of symmetries

Definition. A transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called a motion (or a rigid motion) if it preserves distances between points.

Theorem All motions of \mathbb{R}^{n} form a transformation group. Any motion $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ can be represented as $f(\mathbf{x})=A \mathbf{x}+\mathbf{x}_{0}$, where $\mathbf{x}_{0} \in \mathbb{R}^{n}$ and A is an orthogonal matrix $\left(A^{T} A=A A^{T}=l\right)$.
Given a geometric figure $F \subset \mathbb{R}^{n}$, a symmetry of F is a motion of \mathbb{R}^{n} that preserves F. All symmetries of F form a transformation group.

Example. - The dihedral group D_{n} is the group of symmetries of a regular n-gon. It consists of $2 n$ elements: n reflections, $n-1$ rotations by angles $2 \pi k / n$, $k=1,2, \ldots, n-1$, and the identity function.

Equlateral triangle

Any symmetry of a polygon maps vertices to vertices. Therefore it induces a permutation on the set of vertices. Moreover, the symmetry is uniquely recovered from the permutation.

In the case of the equilateral triangle, any permutation of vertices comes from a symmetry.

Square

In the case of the square, not every permutation of vertices comes from a symmetry of the square. The reason is that a symmetry must map adjacent vertices to adjacent vertices.

Regular tetrahedron

Any symmetry of a polyhedron maps vertices to vertices. In the case of the regular tetrahedron, any permutation of vertices comes from a symmetry.

Rotations of the circle

Let $R_{\alpha}: S^{1} \rightarrow S^{1}$ be the rotation of the circle S^{1} by angle $\alpha \in \mathbb{R}$. All rotations $R_{\alpha}, \alpha \in \mathbb{R}$ form a transformation group. Namely, $R_{\alpha} R_{\beta}=R_{\alpha+\beta}, R_{\alpha}^{-1}=R_{-\alpha}$, and $R_{0}=\mathrm{id}$.
The group of rotations is a subgroup of the group of all symmetries of the circle (the other symmetries are reflections).

Group of automorphisms

Definition. Any isomorphism of a group G onto itself is called an automorphism of G.
Automorphisms are "symmetries" of the group as an algebraic structure. All automorphisms of a given group G form a transformation group denoted $\operatorname{Aut}(G)$.
Example. • Conjugation.
Take any $g \in G$ and define a map $i_{g}: G \rightarrow G$ by $i_{g}(x)=g \times g^{-1}$ for all $x \in G$. Then $i_{g}(x y)=g(x y) g^{-1}$ $=g x\left(g^{-1} g\right) y g^{-1}=\left(g x g^{-1}\right)\left(g y g^{-1}\right)=i_{g}(x) i_{g}(y)$. Hence i_{g} is a homomorphism. Further, $i_{g}\left(i_{h}(x)\right)=i_{g}\left(h \times h^{-1}\right)$ $=g\left(h x h^{-1}\right) g^{-1}=(g h) \times(g h)^{-1}=i_{g h}(x)$. Hence $i_{g} \circ i_{h}=i_{g h}$ for all $g, h \in G$. In particular, $i_{g} \circ i_{g-1}=i_{g-1} \circ i_{g}=i_{e}=\operatorname{id}_{G}$. Therefore $i_{g^{-1}}=\left(i_{g}\right)^{-1}$ so that i_{g} is bijective.
Automorphisms of the form i_{g} are called inner. They form a group $\operatorname{Inn}(G)$, which is a normal subgroup of $\operatorname{Aut}(G)$.

