Modern Algebra I

MATH 415

Lecture 18: Group actions.

Group action

Definition. An **action** ϕ of a group G on a set X (denoted $\phi: G \curvearrowright X$) is a function $\phi: G \times X \to X$ such that

- $\phi(gh, x) = \phi(g, \phi(h, x))$ for all $g, h \in G$ and $x \in M$;
- $\phi(e, x) = x$ for all $x \in X$.

Typically, the element $\phi(g,x)$ is denoted gx. Then the above conditions can be rewritten as g(hx) = (gh)x and ex = x.

The action ϕ can (and should) be regarded as a collection of transformations $T_g: X \to X$, $g \in G$, given by $T_g(x) = \phi(g, x)$. It follows from the definition that $T_g T_h = T_{gh}$, $T_{g^{-1}} = T_g^{-1}$, and $T_e = \mathrm{id}_X$. Hence $\{T_g\}_{g \in G}$ is a transformation group and $g \mapsto T_g$ is a homomorphism of the group G to the symmetric group S_X (called a **permutation representation**).

The group actions can be used to represent a given group as a transformation group or to parametrize a transformation group by an abstract group.

Examples of group actions

Trivial action

Any group G acts on any nonempty set X; the action $\phi: G \curvearrowright X$ is given by $\phi(g,x) = x$.

• Scalar multiplication

The multiplicative group $\mathbb{R} \setminus \{0\}$ acts on any vector space V; the action $\phi : \mathbb{R} \setminus \{0\} \curvearrowright V$ is given by $\phi(\lambda, \mathbf{v}) = \lambda \mathbf{v}$.

- Natural action of a transformation group G is a subgroup of S_X (all permutations of the set X); the action $\phi: G \curvearrowright X$ is given by $\phi(f, x) = f(x)$.
 - Koopman representation

G is a subgroup of S_X ; it acts on the vector space $\mathcal{F}(X,\mathbb{R})$ of functions $f:X\to\mathbb{R}$ by change of the variable. The action $\phi:G\curvearrowright \mathcal{F}(X,\mathbb{R})$ is given by $\phi(g,f)=f\circ g^{-1}$. Note that $(f\circ g_1^{-1})\circ g_2^{-1}=f\circ (g_2g_1)^{-1}$.

Examples of group actions

Left adjoint action

Any group G acts on itself; the action $\phi:G\curvearrowright G$ is given by $\phi(g,x)=gx$.

• Right adjoint action

Any group G acts on itself; the action $\phi:G\curvearrowright G$ is given by $\phi(g,x)=xg^{-1}$. Note that $(xg_1^{-1})g_2^{-1}=x(g_2g_1)^{-1}$.

Conjugation

Any group G acts on itself; the action $\phi: G \curvearrowright G$ is given by $\phi(g,x)=gxg^{-1}$. This action is by automorphisms.

• Action on cosets of a subgroup

Any group G acts on the factor space G/H by a subgroup H (where H need not be normal); the action $\phi: G \curvearrowright G/H$ is given by $\phi(g,xH)=(gx)H$.

An action of the additive group \mathbb{R} is called a **flow**.

Example. Consider an autonomous system of *n* ordinary differential equations of the first order

$$\begin{cases} \dot{x}_1 = g_1(x_1, x_2, \dots, x_n), \\ \dot{x}_2 = g_2(x_1, x_2, \dots, x_n), \\ \dots \dots \\ \dot{x}_n = g_n(x_1, x_2, \dots, x_n), \end{cases}$$

where g_1, g_2, \ldots, g_n are differentiable functions defined in a domain $D \subset \mathbb{R}^n$. In vector form, $\dot{\mathbf{v}} = G(\mathbf{v})$, where $G: D \to \mathbb{R}^n$ is a vector field. Assume that for any $\mathbf{x} \in D$ the initial value problem $\dot{\mathbf{v}} = G(\mathbf{v}), \ \mathbf{v}(0) = \mathbf{x}$ has a unique solution $\mathbf{v}_{\mathbf{x}}(t)$, $t \in \mathbb{R}$. For any $t \in \mathbb{R}$ and $\mathbf{x} \in D$ let $F_t(\mathbf{x}) = \mathbf{v}_{\mathbf{x}}(t)$. Then the maps $F_t: D \to D$, $t \in \mathbb{R}$ describe evolution of a dynamical system governed by the ODEs. Since the system of ODEs is autonomous, it follows that $F_tF_s=F_{t+s}$ for all $t,s\in\mathbb{R}$ so that $\phi(t,\mathbf{x})=F_t(\mathbf{x})$ is a flow on D.

Orbits

Suppose $\phi:G\curvearrowright X$ is a group action. Consider a relation \sim on the set X such that $x\sim y$ if and only if x=gy for some $g\in G$.

Proposition The relation \sim is an equivalence relation.

The equivalence class of a point $x \in X$ consists of all points of the form gx, $g \in G$. It is called the **orbit** of x under the action ϕ and denoted Gx or $\operatorname{Orb}_{\phi}(x)$.

The term "orbit" is motivated by the flows that describe celestial motions.

The action $\phi: G \curvearrowright X$ is called **transitive** if the entire set X forms a single orbit. For example, the adjoint actions of the group G on itself (both left and right) are transitive.

The extreme opposite of a transitive action is the trivial action, for which every point of X is a separate orbit.

Suppose $\phi: G \curvearrowright X$ is a group action.

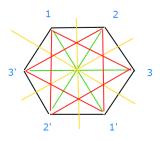
Given an element $g \in G$, let $Fix(g) = \{x \in X \mid gx = x\}$. Elements of Fix(g) are called **fixed points** of g (with respect to the action ϕ).

Given a point $x \in X$, let $Stab(x) = \{g \in G \mid gx = x\}$. Then Stab(x) is a subgroup of G called the **stabilizer** (or **isotropy group**) of X.

The action ϕ is called **faithful** if $T_g \neq T_h$ whenever $g \neq h$, where $T_g(x) = gx$. In other words, each element of G acts on X in a distinct way. In the case of a faithful action, the groups G and $\{T_g\}_{g \in G}$ are isomorphic. The action ϕ is called **free** if $\operatorname{Stab}(x) = \{e\}$ for all $x \in X$. It is called **totally non-free** if $\operatorname{Stab}(x) \neq \operatorname{Stab}(y)$ whenever $x \neq y$.

Theorem (Cayley) The left adjoint action of any group G is free and hence faithful. Consequently, any group is isomorphic to a transformation group.

Problem. Prove that $D_6 \cong S_3 \times \mathbb{Z}_2$.



The group D_6 is the group of symmetries of a regular hexagon. First we consider the action of D_6 on three long diagonals of the hexagon (green segments). After labeling those diagonals by 1, 2 and 3, it gives rise to a homomorphism $\phi:D_6\to S_3$. Next we consider the action of D_6 on two equilateral triangles inscribed into the regular hexagon (red triangles). This gives rise to a homomorphism $\psi:D_6\to\mathbb{Z}_2$. Finally, we define a map $f:D_6\to S_3\times\mathbb{Z}_2$ by $f(T)=(\phi(T),\psi(T))$. This map is an isomorphism.