
MATH 415

Modern Algebra I

Lecture 19:
Review for Exam 1.



Topics for Exam 1

Group theory:

• Binary operations

• Groups
• Subgroups, cyclic groups

• Groups of permutations
• Cosets, Lagrange’s theorem

• Direct product of groups

• Factor groups
• Homomorphisms of groups

• Classification of abelian groups
• Group actions

Fraleigh/Brand: Sections 0–14



Sample problems

Problem 1. Consider an operation ∗ defined on
the set Z of integers by a ∗ b = a + b − 2. Does

this operation provide the integers with a group
structure?

Problem 2. Suppose (S , ∗) is a semigroup

satisfying the following two conditions:
(i) there exists e ∈ S such that e ∗ g = g for all

g ∈ S (existence of a left identity element);
(ii) for any g ∈ S there exists g ′ ∈ S such that
g ′ ∗ g = e (existence of a left inverse).

Prove that (S , ∗) is a group.



Sample problems

Problem 3. Prove that the group (Q \ {0}, ·) is

not cyclic.

Problem 4. Let G be a group of order 125.
Show that G contains an element of order 5.

Problem 5. Find the order and the sign of the

permutation σ = (1 2)(3 4 5 6)(1 2 3 4)(5 6).

Problem 6. Suppose π, σ ∈ S5 are permutations
of order 3. What are possible values for the order

of the permutation πσ?



Sample problems

Problem 7. Find all subgroups of the alternating
group A4.

Problem 8. Determine which of the following
groups of order 12 are isomorphic and which are

not: Z12, Z3 × Z4, Z2 × Z6, S3 × Z2, A4 and D6.

Problem 9. Find an example of an abelian group
G and its subgroups H1 and H2 such that the

subgroups H1 and H2 are isomorphic while the
factor groups G/H1 and G/H2 are not.



Sample problems

Problem 10. Complete the following Cayley table

of a group of order 9:

∗ A B C D E F G H I

A I F

B F G

C H E

D G A

E E

F A B

G E A

H G D

I F C



Problem 1. Consider the operation ∗ defined on the set Z
of integers by a ∗ b = a + b − 2. Does this operation provide
the integers with a group structure?

First we check that the operation ∗ is well defined:
a, b ∈ Z =⇒ a ∗ b = a + b − 2 ∈ Z.

Then we need to check 3 axioms.

Associativity: for any a, b, c ∈ Z, we have
(a∗b)∗c = (a+b−2)∗c = (a+b−2)+c−2 = a+b+c−4,
a∗(b∗c) = a∗(b+c−2) = a+(b+c−2)−2 = a+b+c−4,
hence (a ∗ b) ∗ c = a ∗ (b ∗ c).

Existence of identity: equations a ∗ e = e ∗ a = a are
equivalent to e + a − 2 = a. They hold for e = 2.

Existence of inverse: equations a ∗ b = b ∗ a = e are
equivalent to b + a − 2 = e (= 2). They hold for b = 4− a.

Thus (Z, ∗) is a group.



Problem 1. Consider the operation ∗ defined on the set Z
of integers by a ∗ b = a + b − 2. Does this operation provide
the integers with a group structure?

Alternative solution: First we check that the operation ∗ is
well defined: a, b ∈ Z =⇒ a ∗ b = a + b − 2 ∈ Z.

Then we observe that a ∗ b − 2 = (a − 2) + (b − 2) for all
a, b ∈ Z. Consider a function f : Z → Z given by
f (a) = a − 2. We obtain that f (a ∗ b) = f (a) + f (b) for all
a, b ∈ Z. This means that f is a homomorphism of the binary
structure (Z, ∗) to the binary structure (Z,+). It is easy to
see that f is bijective. Therefore f is an isomorphism of
binary structures. Since all axioms of a group are structural
properties (and hence preserved by isomorphisms), it follows
that (Z, ∗) is a group and that it is isomorphic to the group
(Z,+).



Problem 2. Suppose (S , ∗) is a semigroup satisfying the
following two conditions:
(i) there exists e ∈ S such that e ∗ g = g for all g ∈ S

(existence of a left identity element);
(ii) for any g ∈ S there exists g ′ ∈ S such that g ′ ∗ g = e

(existence of a left inverse).

Prove that (S , ∗) is a group.

Given an element g ∈ G , let g ′ be a left inverse of g .
Further, let g ′′ be a left inverse of g ′. We are going to
simplify an expression g ′′ ∗ g ′ ∗ g ∗ g ′ in two different ways:

(g ′′ ∗ g ′) ∗ (g ∗ g ′) = e ∗ (g ∗ g ′) = g ∗ g ′,
g ′′ ∗ ((g ′ ∗ g) ∗ g ′) = g ′′ ∗ (e ∗ g ′) = g ′′ ∗ g ′ = e.

By associativity of the operation, g ∗ g ′ = e. Furthermore,
g ∗ e = g ∗ (g ′ ∗ g) = (g ∗ g ′) ∗ g = e ∗ g = g . Thus e is a
true (two-sided) identity element and g ′ is a true (two-sided)
inverse of g .



Problem 3. Prove that the group (Q \ {0}, ·) is

not cyclic.

Take any non-zero rational number r . It can be represented

as a reduced fraction: r =
m

n
, where m and n are non-zero

integers and gcd(m, n) = 1.

The cyclic group 〈r〉 consists of fractions
m

n
,
m2

n2
,
m3

n3
, . . . ,

fractions
n

m
,
n2

m2
,
n3

m3
, . . . , and 1. Note that all fractions are

reduced.

The numbers m and n can have only finitely many prime
divisors. Since there are infinitely many prime numbers,
we can find a prime number p that divides neither m nor n.
It is easy to see that p /∈ 〈r〉. Thus 〈r〉 6= Q \ {0}.



Problem 4. Suppose G is a group of order 125.

Show that G contains an element of order 5.

It follows from Lagrange’s Theorem that the order of any
element of the group G divides 125. Hence the only orders we
can expect are 1, 5, 25, and 125.

Let g be any element of G different from the identity element.
Then the order of g is 5, 25 or 125.

If o(g) = 5 then we are done.

If o(g) = 25 then the element g 5 has order 5.

If o(g) = 125 then the element g 25 has order 5.

Remark. In general, if the order of g is n, then the order of

g k is
n

gcd(k, n)
.



Problem 5. Find the order and the sign of the
permutation σ = (1 2)(3 4 5 6)(1 2 3 4)(5 6).

First we need to rewrite the permutation σ as a product of
disjoint cycles (this is not necessary to determine the sign, but
necessary to determine the order). Keeping in mind that the
composition is evaluated from right to left, we find that
σ(1) = 1, σ(2) = 4, and σ(4) = 2. Further, σ(3) = 5 and
σ(5) = 3. Finally, σ(6) = 6. Thus

σ = (2 4)(3 5).

It follows that the order of σ is 2 (least common multiple of
lengths of the disjoint cycles). Besides, σ is an even
permutation so that the sign of σ is +1.



Problem 6. Suppose π, σ ∈ S5 are permutations of order 3.
What are possible values for the order of permutation πσ.

The order of a permutation equals the least common multiple
of the cycle lengths in its cycle decomposition. Hence it
equals 3 only if the cycles are of length 1 or 3 (at least one
cycle of length 3 is required). For permutations π, σ ∈ S5,
this implies that both are cycles of length 3.

Up to relabeling of the set {1, 2, 3, 4, 5}, we can assume that
π = (1 2 3). As for σ, there are several possible choices:
σ1 = (1 4 5), σ2 = (1 2 4), σ3 = (2 1 4), σ4 = (1 2 3), and
σ5 = (1 3 2). Namely, σ = σ1 if there is only one element
that both π and σ move, σ = σ2 or σ3 if there are two such
elements, and σ = σ4 or σ5 if π and σ move the same three
elements.

We have πσ1 = (1 4 5 2 3), πσ2 = (1 3)(2 4), πσ3 = (1 4 3),
πσ4 = (1 3 2), and πσ5 = id. Thus the order of πσ can be
1, 2, 3 or 5.



Problem 7. Find all subgroups of the alternating
group A4.



Problem 8. Determine which of the following groups of
order 12 are isomorphic and which are not: Z12, Z3 × Z4,
Z2 × Z6, S3 × Z2, A4 and D6.

Answer: Z12
∼= Z3 × Z4 and S3 × Z2

∼= D6 are the only
isomorphisms.

The element (1, 1) of the group Z3 × Z4 has order 12.
Therefore it generates the entire group so that Z3 × Z4 is
cyclic. Hence this group is isomorphic to Z12 as another cyclic
group of order 12. On the other hand, the group Z2 × Z6

has no element of order 12.

The first three of the given groups are abelian while the last
three are not. Hence there is no isomorphism between the
first three and the last three.

The groups S3 × Z2 and D6 have elements of order 6 while
the group A4 has none. Therefore A4 is not isomorphic to
S3 × Z2 or D6. The isomorphism S3 × Z2

∼= D6 was
established in the previous lecture.



Problem 9. Find an example of an abelian group G and its
subgroups H1 and H2 such that the subgroups H1 and H2 are
isomorphic while the factor groups G/H1 and G/H2 are not.

Let G = Z, H1 = 2Z and H2 = 3Z. Then G , H1 and H2 are
infinite cyclic groups. Hence they are all isomorphic. On the
other hand, G/H1

∼= Z2 and G/H2
∼= Z3 are groups of

different order.

If G is a finite abelian group and H1 and H2 are isomorphic
subgroups, then both subgroups have the same order and the
same index. Therefore the factor groups G/H1 and G/H2

are of the same order. But they need not be isomorphic.

Let G = Z4 × Z2, H1 = {0} × Z2 and H2 = {0, 2} × {0}.
Then H1 and H2 are cyclic groups of order 2. On the other
hand, G/H1

∼= Z4, a cyclic group, while G/H2
∼= Z2 × Z2,

a non-cyclic group.



Problem 10. Complete the following Cayley table of a group of

order 9: ∗ A B C D E F G H I

A I F

B F G

C H E

D G A B

E E

F A B

G E A

H G D

I F C

First we observe that E is the identity element as E
2 = E . Next

we observe that A
2 = I and A

3 = AI = F so that the order of A

is greater than 3. Since the order of the group is 9, it follows from

Lagrange’s theorem that A has order 9. Therefore the group is

cyclic and A is a generator. Further, B = F
2 = A

6, C = I
2 = A

4,

H = C
2 = A

8, D = H
2 = A

16 = A
7, G = D

2 = A
14 = A

5. Also,

E = A
0. Now that every element of the group is represented as a

power of A, completing the table is a routine task. For example,

DH = A
7
A
8 = A

15 = A
6 = B .


