Rings

Definition. A ring is a set R, together with two binary operations usually called addition and multiplication and denoted accordingly, such that

- R is an abelian group under addition,
- R is a semigroup under multiplication,
- multiplication distributes over addition.

The complete list of axioms is as follows:
(A0) for all $x, y \in R, x+y$ is an element of R;
(A1) $(x+y)+z=x+(y+z)$ for all $x, y, z \in R$;
(A2) there exists an element, denoted 0 , in R such that $x+0=0+x=x$ for all $x \in R$;
(A3) for every $x \in R$ there exists an element, denoted $-x$, in R such that $x+(-x)=(-x)+x=0$;
(A4) $x+y=y+x$ for all $x, y \in R$;
(M0) for all $x, y \in R, \quad x y$ is an element of R;
(M1) $(x y) z=x(y z)$ for all $x, y, z \in R$;
(D) $x(y+z)=x y+x z$ and $(y+z) x=y x+z x$ for all $x, y, z \in R$.

From rings to fields

A ring R is called a domain if it has no divisors of zero, that is, $x y=0$ implies $x=0$ or $y=0$.
A ring R is called a ring with unity if there exists an identity element for multiplication (called the unity and denoted 1).
A division ring (or skew field) is a nontrivial ring with unity in which every nonzero element has a multiplicative inverse.
A ring R is called commutative if the multiplication is commutative.
An integral domain is a nontrivial commutative ring with unity and no divisors of zero.
A field is an integral domain in which every nonzero element has a multiplicative inverse (equivalently, a commutative division ring).

$$
\begin{aligned}
\text { rings } \supset \text { domains } \supset & \supset \text { integral domains } \supset \text { fields } \\
& \supset \text { division rings } \supset
\end{aligned}
$$

Rings with unity

Definition. A ring R is called a ring with unity if there exists an identity element for multiplication (denoted 1).
Lemma If $1=0$ then R is the trivial ring, $R=\{0\}$.
Proof. Let $x \in R$. Then $x 1=x$ and $x 0=0$. Hence $x=0$. Suppose R is a non-trivial ring with unity. An element $x \in R$ is called invertible (or a unit) if it has a multiplicative inverse x^{-1}, i.e., $x x^{-1}=x^{-1} x=1$. The set of all invertible elements of the ring R is denoted R^{\times}or R^{*}.
Proposition $1 R^{\times}$is a group under multiplication.
Sketch of the proof. The unity is invertible: $1^{-1}=1$. If x is invertible then x^{-1} is also invertible: $\left(x^{-1}\right)^{-1}=x$. If x and y are invertible then so is $x y:(x y)^{-1}=y^{-1} x^{-1}$.
Proposition 2 Invertible elements cannot be divisors of zero.
Proof. Let $a \in R^{\times}$and $x \in R$. Then $a x=0 \Longrightarrow$ $a^{-1}(a x)=a^{-1} 0 \Longrightarrow\left(a^{-1} a\right) x=a^{-1} 0 \Longrightarrow x=0$. Similarly, $x a=0 \Longrightarrow x=0$.

Fields

Definition. A field is a set F, together with two binary operations called addition and multiplication and denoted accordingly, such that

- F is an abelian group under addition,
- $F \backslash\{0\}$ is an abelian group under multiplication,
- multiplication distributes over addition.

In other words, the field is a commutative ring with unity
$(1 \neq 0)$ such that any nonzero element has a multiplicative inverse.

Examples. - Real numbers \mathbb{R}.

- Rational numbers \mathbb{Q}.
- Complex numbers \mathbb{C}.
- \mathbb{Z}_{p} : congruence classes modulo p, where p is prime.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients.

Basic properties of fields

- The zero 0 and the unity 1 are unique.
- For any $a \in F$, the negative $-a$ is unique.
- For any $a \neq 0$, the inverse a^{-1} is unique.
- $-(-a)=a$ for all $a \in F$.
- $0 \cdot a=0$ for all $a \in F$.
- $a b=0$ implies that $a=0$ or $b=0$.
- $(-1) \cdot a=-a$ for all $a \in F$.
- $(-1) \cdot(-1)=1$.
- $(-a) b=a(-b)=-a b$ for all $a, b \in F$.
- $(a-b) c=a c-b c$ for all $a, b, c \in F$.

Characteristic of a field

A field F is said to be of nonzero characteristic if $\underbrace{1+1+\cdots+1}=0$ for some positive integer n. n summands
The smallest integer with this property is called the characteristic of F. Otherwise the field F has characteristic 0 .

The fields \mathbb{Q}, \mathbb{R}, and \mathbb{C} have characteristic 0 . The field \mathbb{Z}_{p} (p prime) has characteristic p. In general, any finite field has nonzero characteristic. Any nonzero characteristic is prime since

Problem. Let $F=\{0,1, a, b\}$ be a field consisting of 4 elements, where 0 denotes the additive identity element, 1 denotes the multiplicative identity element, and a, b denote the remaining two elements. Fill in the addition and multiplication tables for the field F.

Problem. Let $F=\{0,1, a, b\}$ be a field consisting of 4 elements, where 0 denotes the additive identity element, 1 denotes the multiplicative identity element, and a, b denote the remaining two elements. Fill in the addition and multiplication tables for the field F.

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

\times	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

Problem. Let $F=\{0,1, a, b\}$ be a field consisting of 4 elements, where 0 denotes the additive identity element, 1 denotes the multiplicative identity element, and a, b denote the remaining two elements. Fill in the addition and multiplication tables for the field F.

Remarks on solution. First we fill in the multiplication table. Since $0 x=0$ and $1 x=x$ for every $x \in F$, it remains to determine only a^{2}, b^{2}, and $a b=b a$. Using the fact that $\{1, a, b\}$ is a multiplicative group, we obtain that $a b=1$, $a^{2}=b$, and $b^{2}=a$.
As for the addition table, we have $x+0=x$ for every $x \in F$. Next step is to determine $1+1$. Assuming $1+1=a$, we obtain $a+1=b$ and $b+1=0$. This is a contradiction: the characteristic of F turns out to be 4, not a prime! Hence $1+1 \neq a$. Similarly, $1+1 \neq b$. By deduction, $1+1=0$. Then $x+x=1 x+1 x=(1+1) x=0 x=0$ for all $x \in F$. The rest is filled in using the cancellation ("sudoku") laws.

