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Lecture 21:
Rings and fields.



Rings

Definition. A ring is a set R , together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that
• R is an abelian group under addition,
• R is a semigroup under multiplication,
• multiplication distributes over addition.

The complete list of axioms is as follows:
(A0) for all x , y ∈ R , x + y is an element of R ;
(A1) (x + y) + z = x + (y + z) for all x , y , z ∈ R ;
(A2) there exists an element, denoted 0, in R such that
x + 0 = 0 + x = x for all x ∈ R ;
(A3) for every x ∈ R there exists an element, denoted −x , in R

such that x + (−x) = (−x) + x = 0;
(A4) x + y = y + x for all x , y ∈ R ;
(M0) for all x , y ∈ R , xy is an element of R ;
(M1) (xy)z = x(yz) for all x , y , z ∈ R ;
(D) x(y+z) = xy+xz and (y+z)x = yx+zx for all x , y , z ∈ R .



From rings to fields

A ring R is called a domain if it has no divisors of zero, that
is, xy = 0 implies x = 0 or y = 0.

A ring R is called a ring with unity if there exists an identity
element for multiplication (called the unity and denoted 1).

A division ring (or skew field) is a nontrivial ring with unity
in which every nonzero element has a multiplicative inverse.

A ring R is called commutative if the multiplication is
commutative.

An integral domain is a nontrivial commutative ring with
unity and no divisors of zero.

A field is an integral domain in which every nonzero element
has a multiplicative inverse (equivalently, a commutative
division ring).

rings ⊃ domains ⊃ integral domains ⊃ fields
⊃ division rings ⊃



Rings with unity
Definition. A ring R is called a ring with unity if there
exists an identity element for multiplication (denoted 1).

Lemma If 1 = 0 then R is the trivial ring, R = {0}.

Proof. Let x ∈ R . Then x1 = x and x0 = 0. Hence x = 0.

Suppose R is a non-trivial ring with unity. An element x ∈ R

is called invertible (or a unit) if it has a multiplicative inverse
x−1, i.e., xx−1 = x−1x = 1. The set of all invertible elements
of the ring R is denoted R× or R∗.

Proposition 1 R× is a group under multiplication.

Sketch of the proof. The unity is invertible: 1−1 = 1. If x is
invertible then x−1 is also invertible: (x−1)−1 = x . If x and y

are invertible then so is xy : (xy )−1 = y−1x−1.

Proposition 2 Invertible elements cannot be divisors of zero.

Proof. Let a ∈ R× and x ∈ R . Then ax = 0 =⇒
a−1(ax) = a−10 =⇒ (a−1a)x = a−10 =⇒ x = 0. Similarly,
xa = 0 =⇒ x = 0.



Fields

Definition. A field is a set F , together with two binary
operations called addition and multiplication and denoted
accordingly, such that

• F is an abelian group under addition,
• F \ {0} is an abelian group under multiplication,
• multiplication distributes over addition.

In other words, the field is a commutative ring with unity
(1 6= 0) such that any nonzero element has a multiplicative
inverse.

Examples. • Real numbers R.

• Rational numbers Q.

• Complex numbers C.

• Zp: congruence classes modulo p, where p is prime.

• R(X ): rational functions in variable X with real coefficients.



Basic properties of fields

• The zero 0 and the unity 1 are unique.

• For any a ∈ F , the negative −a is unique.

• For any a 6= 0, the inverse a−1 is unique.

• −(−a) = a for all a ∈ F .

• 0 · a = 0 for all a ∈ F .

• ab = 0 implies that a = 0 or b = 0.

• (−1) · a = −a for all a ∈ F .

• (−1) · (−1) = 1.

• (−a)b = a(−b) = −ab for all a, b ∈ F .

• (a − b)c = ac − bc for all a, b, c ∈ F .



Characteristic of a field

A field F is said to be of nonzero characteristic if

1 + 1 + · · ·+ 1
︸ ︷︷ ︸

n summands

= 0 for some positive integer n.

The smallest integer with this property is called the
characteristic of F . Otherwise the field F has

characteristic 0.

The fields Q, R, and C have characteristic 0.
The field Zp (p prime) has characteristic p.

In general, any finite field has nonzero characteristic.
Any nonzero characteristic is prime since

(1 + · · ·+ 1
︸ ︷︷ ︸

n summands

)(1 + · · ·+ 1
︸ ︷︷ ︸

m summands

) = 1 + · · · + 1
︸ ︷︷ ︸

nm summands

.



Problem. Let F = {0, 1, a, b} be a field consisting of 4
elements, where 0 denotes the additive identity element, 1
denotes the multiplicative identity element, and a, b denote
the remaining two elements. Fill in the addition and
multiplication tables for the field F .

+ 0 1 a b

0

1

a

b

× 0 1 a b

0

1

a

b



Problem. Let F = {0, 1, a, b} be a field consisting of 4
elements, where 0 denotes the additive identity element, 1
denotes the multiplicative identity element, and a, b denote
the remaining two elements. Fill in the addition and
multiplication tables for the field F .

+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1
b b a 1 0

× 0 1 a b

0 0 0 0 0
1 0 1 a b

a 0 a b 1
b 0 b 1 a



Problem. Let F = {0, 1, a, b} be a field consisting of 4
elements, where 0 denotes the additive identity element, 1
denotes the multiplicative identity element, and a, b denote
the remaining two elements. Fill in the addition and
multiplication tables for the field F .

Remarks on solution. First we fill in the multiplication table.
Since 0x = 0 and 1x = x for every x ∈ F , it remains to
determine only a2, b2, and ab = ba. Using the fact that
{1, a, b} is a multiplicative group, we obtain that ab = 1,
a2 = b, and b2 = a.

As for the addition table, we have x + 0 = x for every x ∈ F .
Next step is to determine 1 + 1. Assuming 1 + 1 = a, we
obtain a+ 1 = b and b + 1 = 0. This is a contradiction: the
characteristic of F turns out to be 4, not a prime! Hence
1 + 1 6= a. Similarly, 1 + 1 6= b. By deduction, 1 + 1 = 0.
Then x + x = 1x + 1x = (1 + 1)x = 0x = 0 for all x ∈ F .
The rest is filled in using the cancellation (“sudoku”) laws.


