MATH 415 Modern Algebra I

Lecture 21: Rings and fields.

Rings

Definition. A ring is a set R, together with two binary operations usually called **addition** and **multiplication** and denoted accordingly, such that

- *R* is an abelian group under addition,
- *R* is a semigroup under multiplication,
- multiplication distributes over addition.

The complete list of axioms is as follows: (A0) for all $x, y \in R$, x + y is an element of R; (A1) (x + y) + z = x + (y + z) for all $x, y, z \in R$; (A2) there exists an element, denoted 0, in R such that x + 0 = 0 + x = x for all $x \in R$: (A3) for every $x \in R$ there exists an element, denoted -x, in R such that x + (-x) = (-x) + x = 0; (A4) x + y = y + x for all $x, y \in R$; (M0) for all $x, y \in R$, xy is an element of R; (M1) (xy)z = x(yz) for all $x, y, z \in R$; (D) x(y+z) = xy+xz and (y+z)x = yx+zx for all $x, y, z \in R$.

From rings to fields

A ring R is called a **domain** if it has no divisors of zero, that is, xy = 0 implies x = 0 or y = 0.

A ring R is called a **ring with unity** if there exists an identity element for multiplication (called the **unity** and denoted 1).

A **division ring** (or **skew field**) is a nontrivial ring with unity in which every nonzero element has a multiplicative inverse.

A ring R is called **commutative** if the multiplication is commutative.

An **integral domain** is a nontrivial commutative ring with unity and no divisors of zero.

A **field** is an integral domain in which every nonzero element has a multiplicative inverse (equivalently, a commutative division ring).

```
\begin{array}{l} \mathsf{rings} \supset \mathsf{domains} \supset \mathsf{integral} \; \mathsf{domains} \supset \mathsf{fields} \\ \supset \; \mathsf{division} \; \mathsf{rings} \supset \end{array}
```

Rings with unity

Definition. A ring R is called a **ring with unity** if there exists an identity element for multiplication (denoted 1).

Lemma If 1 = 0 then R is the trivial ring, $R = \{0\}$.

Proof. Let $x \in R$. Then x1 = x and x0 = 0. Hence x = 0.

Suppose *R* is a non-trivial ring with unity. An element $x \in R$ is called **invertible** (or a **unit**) if it has a multiplicative inverse x^{-1} , i.e., $xx^{-1} = x^{-1}x = 1$. The set of all invertible elements of the ring *R* is denoted R^{\times} or R^* .

Proposition 1 R^{\times} is a group under multiplication.

Sketch of the proof. The unity is invertible: $1^{-1} = 1$. If x is invertible then x^{-1} is also invertible: $(x^{-1})^{-1} = x$. If x and y are invertible then so is xy: $(xy)^{-1} = y^{-1}x^{-1}$.

Proposition 2 Invertible elements cannot be divisors of zero. *Proof.* Let $a \in R^{\times}$ and $x \in R$. Then $ax = 0 \implies$ $a^{-1}(ax) = a^{-1}0 \implies (a^{-1}a)x = a^{-1}0 \implies x = 0$. Similarly, $xa = 0 \implies x = 0$.

Fields

Definition. A field is a set F, together with two binary operations called **addition** and **multiplication** and denoted accordingly, such that

- F is an abelian group under addition,
- $F \setminus \{0\}$ is an abelian group under multiplication,
- multiplication distributes over addition.

In other words, the field is a commutative ring with unity $(1 \neq 0)$ such that any nonzero element has a multiplicative inverse.

Examples. • Real numbers \mathbb{R} .

- \bullet Rational numbers $\mathbb Q.$
- \bullet Complex numbers $\mathbb{C}.$
- \mathbb{Z}_p : congruence classes modulo p, where p is prime.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients.

Basic properties of fields

- The zero 0 and the unity 1 are unique.
- For any $a \in F$, the negative -a is unique.
- For any $a \neq 0$, the inverse a^{-1} is unique.

•
$$-(-a) = a$$
 for all $a \in F$.

•
$$0 \cdot a = 0$$
 for all $a \in F$.

• ab = 0 implies that a = 0 or b = 0.

•
$$(-1) \cdot a = -a$$
 for all $a \in F$.

•
$$(-1) \cdot (-1) = 1.$$

•
$$(-a)b = a(-b) = -ab$$
 for all $a, b \in F$.

• (a-b)c = ac - bc for all $a, b, c \in F$.

Characteristic of a field

A field *F* is said to be of nonzero characteristic if $1 + 1 + \dots + 1 = 0$ for some positive integer *n*.

The smallest integer with this property is called the **characteristic** of F. Otherwise the field F has characteristic 0.

The fields \mathbb{Q} , \mathbb{R} , and \mathbb{C} have characteristic 0. The field \mathbb{Z}_p (p prime) has characteristic p. In general, any finite field has nonzero characteristic. Any nonzero characteristic is prime since

Problem. Let $F = \{0, 1, a, b\}$ be a field consisting of 4 elements, where 0 denotes the additive identity element, 1 denotes the multiplicative identity element, and a, b denote the remaining two elements. Fill in the addition and multiplication tables for the field F.

Problem. Let $F = \{0, 1, a, b\}$ be a field consisting of 4 elements, where 0 denotes the additive identity element, 1 denotes the multiplicative identity element, and a, b denote the remaining two elements. Fill in the addition and multiplication tables for the field F.

+	0	1	а	b
0	0	1	а	b
1	1	0	b	а
а	а	b	0	1
b	b	а	1	0

×	0	1	а	b
0	0	0	0	0
1	0	1	а	b
а	0	а	b	1
b	0	b	1	а

Problem. Let $F = \{0, 1, a, b\}$ be a field consisting of 4 elements, where 0 denotes the additive identity element, 1 denotes the multiplicative identity element, and a, b denote the remaining two elements. Fill in the addition and multiplication tables for the field F.

Remarks on solution. First we fill in the multiplication table. Since 0x = 0 and 1x = x for every $x \in F$, it remains to determine only a^2 , b^2 , and ab = ba. Using the fact that $\{1, a, b\}$ is a multiplicative group, we obtain that ab = 1, $a^2 = b$, and $b^2 = a$.

As for the addition table, we have x + 0 = x for every $x \in F$. Next step is to determine 1 + 1. Assuming 1 + 1 = a, we obtain a + 1 = b and b + 1 = 0. This is a contradiction: the characteristic of F turns out to be 4, not a prime! Hence $1 + 1 \neq a$. Similarly, $1 + 1 \neq b$. By deduction, 1 + 1 = 0. Then x + x = 1x + 1x = (1 + 1)x = 0x = 0 for all $x \in F$. The rest is filled in using the cancellation ("sudoku") laws.