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Lecture 22:
Advanced algebraic structures.



Rings

Definition. A ring is a set R, together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that

e R is an abelian group under addition,

e R is a semigroup under multiplication,

e multiplication distributes over addition.

The complete list of axioms is as follows:

(AO0) for all x,y € R, x+y is an element of R;

(Al) (x+y)+z=x+(y+z) forall x,y,z€R;

(A2) there exists an element, denoted 0, in R such that
X+0=0+x=x forall xe€R;

(A3) for every x € R there exists an element, denoted —x, in R
such that x4+ (—x) = (—x) +x=0;

(A4) x+y=y+x forall x,y €R;

(MO) for all x,y € R, xy is an element of R;

(M1) (xy)z = x(yz) forall x,y,z € R;

(D) x(y+z) = xy+xz and (y+z)x = yx+zx forall x,y,z € R.



Fields

Definition. A field is a set F, together with two binary
operations called addition and multiplication and denoted
accordingly, such that

e F is an abelian group under addition,
e F\ {0} is an abelian group under multiplication,
e multiplication distributes over addition.

In other words, the field is a commutative ring with unity
(1 # 0) such that any nonzero element has a multiplicative
inverse.

Examples. e Real numbers R.

e Rational numbers Q.

e Complex numbers C.

® Zy: congruence classes modulo p, where p is prime.

e R(X): rational functions in variable X with real coefficients.



Vector spaces over a field

Definition. Given a field F, a vector space V over F is an
additive abelian group endowed with a mixed operation
¢ F xV — V called scalar multiplication or scaling.

Elements of V and F are referred to respectively as vectors
and scalars. The scalar multiple ¢(\, v) is denoted Av.

The scalar multiplication is to satisfy the following axioms:

(V0) forall ve V and A € F, Av is an element of V;
(V1) M(v+w)=Av+Aw forall v,we V and X €F;
(V2) A+ p)v=Av+puv forall veV and A\ pu€F;
(V3) Muv) = (Ap)v forall veV and A\ peF;

(V4) lv=v forall veV.

(Almost) all linear algebra developed for vector spaces over R
can be generalized to vector spaces over an arbitrary field F.
This includes: linear independence, span, basis, dimension,
determinants, matrices, eigenvalues and eigenvectors.



Examples of vector spaces over a field F:

e The space F" of n-dimensional coordinate
vectors (xi, Xo, ..., X,) with coordinates in F.

e The space M, ,(F) of nxm matrices with
entries in F.

e The space F[X] of polynomials

p(x) =ao+a X +---+a,X" with coefficients in F.
e Any field F’ that is an extension of F (i.e.,

F C F’ and the operations on F are restrictions of
the corresponding operations on F’). In particular,
C is a vector space over R and over Q, Ris a
vector space over Q.



Counterexample. e Consider the abelian group
V = Z with the following scalar multiplication over
the field F = Q ("“selective scaling”):

Av if A\veZ,
A@v—{ U otherwise for any veZ and A€Q.

The group (Z,+) with the scalar multiplication ® is not a
vector space over Q. One reason is that the distributive law
A+p)Ov=A®v+pu©v does not hold.

For example, let A=p=1/2 and v=1. Then
(2+3)ov=10v=v=1while J0v+iov=v+v=2

Remark. The essential information about the scalar
multiplication ® used in the above counterexample is that
1Gv=v and $®v isan integer. It follows that the
additive group Z, in principle, cannot be made into a vector
space over Q.



Linear independence over QQ

Since the set R of real numbers and the set QQ of rational
numbers are fields, we can regard R as a vector space over Q.
Real numbers ri, rp, ... r, are said to be linearly
independent over Q if they are linearly independent as
vectors in that vector space.

Example. 1 and /2 are linearly independent over Q.

Assume a-1+ bv/2 =0 for some a,b € Q. We have to
show that a= b =0.

Indeed, b =0 as otherwise /2 = —a/b, a rational number.
Then a =0 as well.

In general, two nonzero real numbers r; and r, are linearly
independent over Q if r;/r, is irrational.



Linear independence over QQ

Example. 1, V2, and /3 are linearly independent over Q.

Assume a+ byv/2 + c\/3 =0 for some a, b, c € Q.
We have to show that a= b= c = 0.
a+bV2+4+¢cV3=0 = a+bV/2=—-cV3
= (a+bv2)? = (—cV3)?
— (a® +2b% —3c?) +2ab\V/2 = 0.

Since 1 and /2 are linearly independent over Q, we obtain
a’> +2b?> —3c? =2ab = 0. In particular, a=0 or b= 0.

Then a4+ cv/3 =0 or bv/2+ cv/3=0. However 1 and /3
are linearly independent over Q as well as v/2 and v/3. Thus
a=b=c=0.



Finite fields

Theorem 1 Any finite field F has nonzero characteristic.

Proof: Consider a sequence 1,1+1,1+1+1,... Since F is
finite, there are repetitions in this sequence. Clearly, the
difference of any two elements is another element of the
sequence. Hence the sequence contains 0 so that the
characteristic of F is nonzero.

Theorem 2 The number of elements in a finite field F is p*,
where p is a prime number.

Proof: Let p be the characteristic of F. By the above,

p > 0. As we know from the previous lecture, p is prime.

Let F’ be the set of all elements 1,1+1,1+1+41,... Clearly,
F’ consists of p elements. One can show that F’ is a subfield
(canonically identified with Z,). It follows that F has p*
elements, where k = dim F as a vector space over F’'.



Algebra over a field

Definition. An algebra A over a field F (or F-algebra) is a
vector space over F with a multiplication which is a bilinear
operation on A. That is, the product xy is both a linear
function of x and a linear function of y.

To be precise, the following axioms are to be satisfied:

(A0) for all x,y € A, the product xy is an element of A;
(A1) x(y+z)=xy+xz and (y+z)x=yx+zx for x,y,z€ A;
(A2) (Ax)y = A(xy) = x(A\y) forall x,y € A and X\ € F.

An F-algebra is associative if the multiplication is associative.
An associative algebra is both a vector space and a ring.

An F-algebra A is a Lie algebra if the multiplication (usually
denoted [x,y] and called Lie bracket in this case) satisfies:
(Antisymmetry): [x,y] = —[y,x] forall x,y € A;
(Jacobi’s identity): [[x,y], z] + [[y, z], x] + [[z,x],y] =0
for all x,y,z € A.



Examples of associative algebras:

e The space M,(F) of nxn matrices with entries in F.

e The space F[X] of polynomials

p(x) =ao+ a X +---+ a,X" with coefficients in F.

e The space of all functions f: S — F on a set S taking
values in a field F.

e Any field F’ that is an extension of a field F is an
associative algebra over F.

Examples of Lie algebras:

e R3 with the cross product is a Lie algebra over R.

e Any associative algebra A with a Lie bracket (called the
commutator) defined by [x,y] = xy — yx.



