MATH 415

Lecture 22: Advanced algebraic structures.

Modern Algebra I

Rings

Definition. A **ring** is a set R, together with two binary operations usually called **addition** and **multiplication** and denoted accordingly, such that

- *R* is an abelian group under addition,
- R is a semigroup under multiplication,
- multiplication distributes over addition.

The complete list of axioms is as follows:

(A0) for all
$$x, y \in R$$
, $x + y$ is an element of R ;

(A1)
$$(x + y) + z = x + (y + z)$$
 for all $x, y, z \in R$;

$$x + 0 = 0 + x = x$$
 for all $x \in R$;

(A3) for every
$$x \in R$$
 there exists an element, denoted $-x$, in R such that $x + (-x) = (-x) + x = 0$;

(A4)
$$x + y = y + x$$
 for all $x, y \in R$;

(M0) for all
$$x, y \in R$$
, xy is an element of R ;

(M1)
$$(xy)z = x(yz)$$
 for all $x, y, z \in R$;

(D)
$$x(y+z) = xy+xz$$
 and $(y+z)x = yx+zx$ for all $x, y, z \in R$.

Fields

Definition. A **field** is a set *F*, together with two binary operations called **addition** and **multiplication** and denoted accordingly, such that

- F is an abelian group under addition,
- $F \setminus \{0\}$ is an abelian group under multiplication,
- multiplication distributes over addition.

In other words, the field is a commutative ring with unity (1 \neq 0) such that any nonzero element has a multiplicative inverse.

Examples. • Real numbers \mathbb{R} .

- ullet Rational numbers \mathbb{Q} .
- ullet Complex numbers \mathbb{C} .
- \mathbb{Z}_p : congruence classes modulo p, where p is prime.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients.

Vector spaces over a field

Definition. Given a field F, a **vector space** V over F is an additive abelian group endowed with a mixed operation $\phi: F \times V \to V$ called **scalar multiplication** or **scaling**.

Elements of V and F are referred to respectively as **vectors** and **scalars**. The scalar multiple $\phi(\lambda, v)$ is denoted λv .

The scalar multiplication is to satisfy the following axioms:

- **(V0)** for all $v \in V$ and $\lambda \in F$, λv is an element of V; **(V1)** $\lambda(v+w) = \lambda v + \lambda w$ for all $v, w \in V$ and $\lambda \in F$; **(V2)** $(\lambda + \mu)v = \lambda v + \mu v$ for all $v \in V$ and $\lambda, \mu \in F$; **(V3)** $\lambda(\mu v) = (\lambda \mu)v$ for all $v \in V$ and $\lambda, \mu \in F$; **(V4)** 1v = v for all $v \in V$.
- (Almost) all linear algebra developed for vector spaces over \mathbb{R} can be generalized to vector spaces over an arbitrary field F. This includes: linear independence, span, basis, dimension, determinants, matrices, eigenvalues and eigenvectors.

Examples of vector spaces over a field F:

- The space F^n of *n*-dimensional coordinate vectors (x_1, x_2, \dots, x_n) with coordinates in F.
- The space $\mathcal{M}_{n,m}(F)$ of $n \times m$ matrices with entries in F.
- The space F[X] of polynomials $p(x) = a_0 + a_1 X + \cdots + a_n X^n$ with coefficients in F.
- Any field F' that is an extension of F (i.e., $F \subset F'$ and the operations on F are restrictions of the corresponding operations on F'). In particular, \mathbb{C} is a vector space over \mathbb{R} and over \mathbb{Q} , \mathbb{R} is a vector space over \mathbb{Q} .

Counterexample. • Consider the abelian group $V = \mathbb{Z}$ with the following scalar multiplication over the field $F = \mathbb{Q}$ ("selective scaling"):

$$\lambda \odot v = \begin{cases} \lambda v & \text{if } \lambda v \in \mathbb{Z}, \\ v & \text{otherwise} \end{cases} \text{ for any } v \in \mathbb{Z} \text{ and } \lambda \in \mathbb{Q}.$$

vector space over \mathbb{Q} . One reason is that the distributive law $(\lambda + \mu) \odot v = \lambda \odot v + \mu \odot v$ does not hold. For example, let $\lambda = \mu = 1/2$ and v = 1. Then $(\frac{1}{2} + \frac{1}{2}) \odot v = 1 \odot v = v = 1$ while $\frac{1}{2} \odot v + \frac{1}{2} \odot v = v + v = 2$.

The group $(\mathbb{Z},+)$ with the scalar multiplication \odot is not a

Remark. The essential information about the scalar multiplication
$$\odot$$
 used in the above counterexample is that $1 \odot v = v$ and $\frac{1}{2} \odot v$ is an integer. It follows that the additive group \mathbb{Z} , in principle, cannot be made into a vector space over \mathbb{O} .

Linear independence over $\mathbb Q$

Since the set \mathbb{R} of real numbers and the set \mathbb{Q} of rational numbers are fields, we can regard \mathbb{R} as a vector space over \mathbb{Q} . Real numbers r_1, r_2, \ldots, r_n are said to be **linearly independent over** \mathbb{Q} if they are linearly independent as vectors in that vector space.

Example. 1 and $\sqrt{2}$ are linearly independent over \mathbb{Q} .

Assume $a \cdot 1 + b\sqrt{2} = 0$ for some $a, b \in \mathbb{Q}$. We have to show that a = b = 0.

Indeed, b=0 as otherwise $\sqrt{2}=-a/b$, a rational number. Then a=0 as well.

In general, two nonzero real numbers r_1 and r_2 are linearly independent over $\mathbb Q$ if r_1/r_2 is irrational.

Linear independence over $\mathbb Q$

Example. 1, $\sqrt{2}$, and $\sqrt{3}$ are linearly independent over \mathbb{Q} .

Assume $a + b\sqrt{2} + c\sqrt{3} = 0$ for some $a, b, c \in \mathbb{Q}$. We have to show that a = b = c = 0.

$$a + b\sqrt{2} + c\sqrt{3} = 0 \implies a + b\sqrt{2} = -c\sqrt{3}$$
$$\implies (a + b\sqrt{2})^2 = (-c\sqrt{3})^2$$
$$\implies (a^2 + 2b^2 - 3c^2) + 2ab\sqrt{2} = 0.$$

Since 1 and $\sqrt{2}$ are linearly independent over \mathbb{Q} , we obtain $a^2 + 2b^2 - 3c^2 = 2ab = 0$. In particular, a = 0 or b = 0.

Then $a+c\sqrt{3}=0$ or $b\sqrt{2}+c\sqrt{3}=0$. However 1 and $\sqrt{3}$ are linearly independent over $\mathbb Q$ as well as $\sqrt{2}$ and $\sqrt{3}$. Thus a=b=c=0.

Finite fields

Theorem 1 Any finite field *F* has nonzero characteristic.

Proof: Consider a sequence $1, 1+1, 1+1+1, \ldots$ Since F is finite, there are repetitions in this sequence. Clearly, the difference of any two elements is another element of the sequence. Hence the sequence contains 0 so that the characteristic of F is nonzero.

Theorem 2 The number of elements in a finite field F is p^k , where p is a prime number.

Proof: Let p be the characteristic of F. By the above, p>0. As we know from the previous lecture, p is prime. Let F' be the set of all elements $1,1+1,1+1+1,\ldots$ Clearly, F' consists of p elements. One can show that F' is a subfield (canonically identified with \mathbb{Z}_p). It follows that F has p^k elements, where $k=\dim F$ as a vector space over F'.

Algebra over a field

Definition. An **algebra** A over a field F (or F-**algebra**) is a vector space over F with a multiplication which is a bilinear operation on A. That is, the product xy is both a linear function of x and a linear function of y.

To be precise, the following axioms are to be satisfied:

(A0) for all $x, y \in A$, the product xy is an element of A; **(A1)** x(y+z) = xy+xz and (y+z)x = yx+zx for $x, y, z \in A$; **(A2)** $(\lambda x)y = \lambda(xy) = x(\lambda y)$ for all $x, y \in A$ and $\lambda \in F$.

An *F*-algebra is **associative** if the multiplication is associative. An associative algebra is both a vector space and a ring.

An F-algebra A is a **Lie algebra** if the multiplication (usually denoted [x, y] and called **Lie bracket** in this case) satisfies:

(Antisymmetry): [x, y] = -[y, x] for all $x, y \in A$; **(Jacobi's identity)**: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all $x, y, z \in A$.

Examples of associative algebras:

- The space $\mathcal{M}_n(F)$ of $n \times n$ matrices with entries in F.
- The space F[X] of polynomials

$$p(x) = a_0 + a_1 X + \cdots + a_n X^n$$
 with coefficients in F .

- The space of all functions $f: S \to F$ on a set S taking values in a field F.
- Any field F' that is an extension of a field F is an associative algebra over F.

Examples of Lie algebras:

- \mathbb{R}^3 with the cross product is a Lie algebra over \mathbb{R} .
- Any associative algebra A with a Lie bracket (called the **commutator**) defined by [x, y] = xy yx.