MATH 415

Modern Algebra I

Lecture 24:
 Quaternions.

Field of quotients.

Complex numbers as an \mathbb{R}-algebra

Complex numbers can be defined as a certain 2-dimensional algebra over the field \mathbb{R}. We have a distinguished basis $\mathbf{1}, i$. Hence every complex number z is uniquely represented as $z=x \mathbf{1}+y i$, where $x, y \in \mathbb{R}$.

Since multiplication is a bilinear function, it is enough to define $z_{1} \cdot z_{2}$ in the case $z_{1}, z_{2} \in\{\mathbf{1}, i\}$. We set $\mathbf{1} \cdot \mathbf{1}=\mathbf{1}, \mathbf{1} \cdot i=i \cdot \mathbf{1}=i$ and $i \cdot i=-\mathbf{1}$.

Because of bilinearity of the product, it is easy to check that $\mathbf{1} \cdot z=z \cdot \mathbf{1}, z_{1} \cdot z_{2}=z_{2} \cdot z_{1}$ and $\left(z_{1} \cdot z_{2}\right) \cdot z_{3}=z_{1} \cdot\left(z_{2} \cdot z_{3}\right)$.

Quaternions

The Hamilton quaternions \mathbb{H} can be defined as a certain 4-dimensional algebra over the field \mathbb{R}. We have a distinguished basis $\mathbf{1}, i, j, k$. Hence every quaternion q is uniquely represented as
$z=a \mathbf{1}+b i+c j+d k$, where $a, b, c, d \in \mathbb{R}$.
Since multiplication is a bilinear function, it is enough to define $q_{1} \cdot q_{2}$ for $q_{1}, q_{2} \in\{\mathbf{1}, i, j, k\}$. We set $\mathbf{1} \cdot \mathbf{1}=\mathbf{1}, \mathbf{1} \cdot i=i \cdot \mathbf{1}=i, \mathbf{1} \cdot j=j \cdot \mathbf{1}=j$, $\mathbf{1} \cdot k=k \cdot \mathbf{1}=k, i \cdot i=j \cdot j=k \cdot k=-\mathbf{1}, i \cdot j=k$, $j \cdot i=-k, j \cdot k=i, k \cdot j=-i, k \cdot i=j, i \cdot k=-j$.

Theorem \mathbb{H} is a non-commutative division ring.

Lemma $1 q \cdot \mathbf{1}=\mathbf{1} \cdot q=q$ for all $q \in \mathbb{H}$.
Proof. Since $f_{1}(q)=q \cdot \mathbf{1}, f_{2}(q)=\mathbf{1} \cdot q$ and $f_{3}(q)=q$ are all linear functions on \mathbb{H}, it is enough to prove the equalities in the case when $q \in\{\mathbf{1}, i, j, k\}$. In this case they follow from the definition of multiplication.

Lemma 2 For any $a, b \in \mathbb{R}$ and $q \in \mathbb{H}$ we have $(a \mathbf{1})+(b \mathbf{1})=(a+b) \mathbf{1},(a \mathbf{1}) \cdot(b \mathbf{1})=(a b) \mathbf{1}$ and $(a 1) \cdot q=a q$.

In view of Lemma 2, we can identify any quaternion of the form al with the real number a so that $\mathbb{R} \subset \mathbb{H}$. This also allows to consider scalar multiplication on \mathbb{H} as a special case of multiplication of quaternions. In particular, we can use the same notation $q_{1} q_{2}$ for both kinds of multiplication.

Lemma 3 Multiplication of quaternions is associative. Idea of the proof. Since $\left(q_{1} q_{2}\right) q_{3}$ and $q_{1}\left(q_{2} q_{3}\right)$ are both trilinear functions of $q_{1}, q_{2}, q_{3} \in \mathbb{H}$, it is enough to prove the equality $\left(q_{1} q_{2}\right) q_{3}=q_{1}\left(q_{2} q_{3}\right)$ in the case when $q_{1}, q_{2}, q_{3} \in\{\mathbf{1}, i, j, k\}$.

For any quaternion $q=a+b i+c j+d k$, we define the conjugate quaternion by $\bar{q}=a-b i-c j-d k$ and the modulus of q by $|q|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$.

Lemma $4 q \bar{q}=\bar{q} q=|q|^{2}$ for all $q \in \mathbb{H}$.
Lemma 5 Every nonzero quaternion q has a multiplicative inverse: $q^{-1}=|q|^{-2} \bar{q}$.

Rational quaternions are quaternions of the form $q=a+b i+c j+d k$, where $a, b, c, d \in \mathbb{Q}$. The rational quaternions also form a division ring.
Integer quaternions are quaternions of the form $q=a+b i+c j+d k$, where $a, b, c, d \in \mathbb{Z}$. The integer quaternions form a ring. This ring has only 8 invertible elements (the units): $\pm 1, \pm i, \pm j, \pm k$. These 8 elements form a group under quaternion multiplication, called the quaternion group and denoted Q_{8}.

Theorem Any non-abelian group of order 8 is isomorphic either to the dihedral group D_{4} or to the quaternion group Q_{8}.

From a ring to a field

Question 1. When a ring R can be extended to a field?
An obvious necessary condition is commutativity. Another necessary condition is absence of zero divisors (which is equivalent to cancellation laws).
Proposition If an element of a ring with unity has a multiplicative inverse, then it is not a divisor of zero.

Question 2. When a semigroup S can be extended to a group?

Theorem If S is a commutative semigroup with cancellation, then it can be extended to an abelian group G. Moreover, if $G=\langle S\rangle$, then any element of G is of the form $b^{-1} a$, where $a, b \in S$. Moreover, if $G=\langle S\rangle$, then the group G is unique up to isomorphism.

Theorem Any finite semigroup with cancellation is actually a group.

Lemma If S is a finite semigroup with cancellation, then for any $s \in S$ there exists an integer $k \geq 2$ such that $s^{k}=s$.
Proof: Since S is finite, the sequence s, s^{2}, s^{3}, \ldots contains repetitions, i.e., $s^{k}=s^{m}$ for some $k>m \geq 1$. If $m=1$ then we are done. If $m>1$ then $s^{m-1} s^{k-m+1}=s^{m-1} s$, which implies $s^{k-m+1}=s$.

Proof of the theorem: Take any $s \in S$. By Lemma, we have $s^{k}=s$ for some $k \geq 2$. Then $e=s^{k-1}$ is the identity element. Indeed, for any $g \in S$ we have $s^{k} g=s g$ or, equivalently, $s(e g)=s g$. After cancellation, $e g=g$. Similarly, $g e=g$ for all $g \in S$. Finally, for any $g \in S$ there is $n \geq 2$ such that $g^{n}=g=g e$. Then $g^{n-1}=e$, which implies that $g^{n-2}=g^{-1}$.

Field of quotients

Theorem A ring R with unity can be extended to a field if and only if it is an integral domain.

If R is an integral domain, then there is a (smallest) field F containing R called the quotient field of R (or the field of quotients). Any element of F is of the form $b^{-1} a$, where $a, b \in R$. The field F is unique up to isomorphism.

Examples. - The quotient field of \mathbb{Z} is \mathbb{Q}.

- The quotient field of $\mathbb{R}[X]$ is $\mathbb{R}(X)$.
- The quotient field of $\mathbb{Z}[\sqrt{2}]=\{m+n \sqrt{2} \mid$
$m, n \in \mathbb{Z}\}$ is $\mathbb{Q}[\sqrt{2}]=\{p+q \sqrt{2} \mid p, q \in \mathbb{Q}\}$.

