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Lecture 25:
Modular arithmetic.



Congruences

Let n be a positive integer. The integers a and b are called
congruent modulo n if they have the same remainder when
divided by n. An equivalent condition is that n divides the
difference a — b.

Notation. a= b mod n or a= b (mod n).
Examples. 12 =4mod8, 24 =0mod6, 31 = —4mod 35.

Proposition If a= bmodn then for any integer c,
(i) a+ cn=bmodn;

(i) a+ c= b+ cmodn;

(i) ac = bcmod n.

Indeed, if a — b= kn, where k is an integer, then
(a+cn)—b=a—b+cn=(k+c)n,
(a+c)—(b+c)=a—b=kn, and

ac — bc = (a— b)c = (kc)n.



More properties of congruences

Proposition If a=a modn and b= b modn,
then (i) a+ b= 34 + b’ modn;

(ii)) a— b= 3 — b modn;

(iii) ab = a'b'mod n.

Proof: Since a= a’ modn and b= b'modn, the number n
divides a—a and b— Vb, ie., a—a =kn and b— b =Vn,
where k,¢ € Z. Then n also divides
(a+b)—(a+b)=(a—3a)+(b—b)=kn+{ln=(k+{)n,
(a—b)—(a—b)=(a—a)—(b—b')=kn—{ln= (k—{)n,
ab—ab =ab—ab +abl —ab =a(b—b)+(a—a)b
= a(ln) + (kn)b' = (al + kb')n.



Divisibility of decimal integers

Let didk_1...d3drd; be the decimal notation of a positive
integer n (0 <d; <9). Then

n=d; +10d, + 102d3 4+ 10k_2dk—1 + 10k_1dk.

Proposition 1 The integer n is divisible by 2, 5 or 10 if and
only if the last digit d; is divisible by the same number.

Proposition 2 The integer n is divisible by 4, 20, 25, 50 or
100 if and only if dbd; is divisible by the same number.

Proposition 3 The integer n is divisible by 3 or 9 if and only
if the sum of its digits dx + --- + db + d; is divisible by the
same number.

Proposition 4 The integer n is divisible by 11 if and only if
the alternating sum of its digits
(—1)k_1dk + -+ d3— dr+ d; is divisible by 11.

Hint: 10™ = 1mod9, 10" = 1mod 3, 10" = (—1)" mod 11.



Congruence classes

Given an integer a, the congruence class of a modulo n is
the set of all integers congruent to a modulo n.

Notation. [a], or simply [a]. Also denoted a+ nZ as
[a], = {a+ nk | k € Z}. Also denoted amod n.

Examples. [0], is the set of even integers, [1], is the set of
odd integers, [2]4 is the set of even integers not divisible by 4.

If n divides a positive integer m, then every congruence class
modulo n is the union of m/n congruence classes modulo m.
For example, [2]s = [2]s U [6]s.

The congruence class [a], = a+ nZ is a coset of the
subgroup nZ of the group Z. Hence the set of all congruence
classes modulo n is the factor space Z/nZ. It is usually
identified with Z, so that Z, = {[0],, [1]., [2]n, - - -, [n—1]4}



Modular arithmetic

Modular arithmetic is an arithmetic on the set Z, = Z/nZ
for some n > 1. The arithmetic operations on Z, are defined
as follows. For any integers a and b, we let

[a], + [b], = [a+ b].,
[a]n - [b]n = [a - b]m
[a]n [b]» = [ab],.

Theorem The arithmetic operations on 7Z,, are defined
uniquely, namely, they do not depend on the choice of
representatives a, b for the congruence classes.

Proof: Let a’ be another representative of [a], and b’ be
another representative of [b],. Then & = amodn and

b' = bmod n. According to a previously proved proposition,
this implies a8 +b' =a+ bmodn, & — b =a— bmodn
and a'b' = abmod n. In other words, [’ + b/], = [a + b],,
[ — b], =[a— b], and [a'b], = [ab],.



Invertible congruence classes

The set Z, = Z/nZ, with addition and multiplication defined
above, forms a commutative ring with unity. The unity is [1],.
We say that a congruence class [a], is invertible (or the
integer a is invertible modulo n) if [a], has a multiplicative
inverse in Z,, that is, ab= 1modn for some b € Z. If this
is the case, then b is called a multiplicative inverse of a
modulo n.

The set of all invertible congruence classes in Z, is denoted G,
or Z*. It is a multiplicative group (which is true for any ring
with unity).

Theorem A nonzero congruence class [a], is invertible if and
only if ged(a,n) = 1. Otherwise it is a divisor of zero.

Corollary The ring Z, is a field if and only if n is prime.



Theorem A nonzero congruence class [a], is
invertible if and only if gcd(a, n) = 1. Otherwise
[a], is a divisor of zero.

Proof: Let d =gcd(a,n). If d > 1 then n/d and
a/d are integers, [n/d], # [0],, and [a],[n/d], =
[:][an/d]cr;: [3/df]n[”]n = [a/d]n[0]s = [0]s. Hence

Now consider the case gcd(a,n) = 1. In this case 1
is an integral linear combination of a and n:
ma+ kn =1 for some m, k € Z. Then

[1], = [ma + kn], = [ma], = [m],[a],.

Thus [a], is invertible and [a]. 1 = [m],.



Linear congruences

Linear congruence is a congruence of the form ax = bmod n,
where x is an integer variable. We can regard it as a linear
equation in Z,: [a],X = [b],.

In the case b =1, solving the linear congruence is equivalent
to finding the inverse of the congruence class [a],. In the case
b =0, it is equivalent to determining if [a], is a zero-divisor.

Proposition 1 If the congruence class [a], is invertible and &’
is a multiplicative inverse of a modulo n, then the congruence
ax = bmod n is equivalent to x = a’b mod n.

Proposition 2 Let a,b,c,n € 7Z and c,n > 1. Then the
congruence ac = bcmod nc is equivalent to a = bmod n.

Proposition 3 Let a,b,c,n€ Z and ¢c,n>1. If
ac = bcmod n and gcd(c,n) =1, then a = bmod n.



Theorem The linear congruence ax = bmod n has a
solution if and only if d = gcd(a, n) divides b. If this is the
case then the solution set consists of d congruence classes
modulo n that form a single congruence class modulo n/d.

Proof: If the congruence has a solution x, then ax = b+ kn
for some k € Z. Hence b = ax — kn, which is divisible by
ged(a, n).

Conversely, assume that d divides b. Then the linear
congruence is equivalent to a’x = b'mod m, where a’' = a/d,
b =b/d and m = n/d. In other words, [a'] X = [6']m,
where X = [x] .

We have gcd(a’, m) = ged(a/d,n/d) = ged(a,n)/d = 1.
Hence the congruence class [a'],, is invertible. It follows that
all solutions x of the linear congruence form a single
congruence class modulo m, X = [a'] }[b/]m. This
congruence class splits into d distinct congruence classes
modulo n = md.



Problem. Solve the congruence 12x = 6 mod 21.

< 4x=2mod7 < 2x =1mod7
= =27 =[4
< [X]21 = [4]21 or [11]21 or [18]21

Problem. Find all integer solutions of the
equation 12x — 21y = 6.

For any integer solution of the equation, the number x is a
solution of the linear congruence 12x = 6 mod21. By the
above, x =4mod7, thatis, x =4 + 7k for some k € Z.
Then y = (12x — 6)/21 = (12(4 + 7k) — 6)/21 = 2 + 4k,
which is also integer. Thus the general integer solution is

x=4+7Tk, y =2+ 4k, where k € Z.



