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Lecture 31:
Subrings and ideals.



Subrings

Definition. Suppose R and R0 are rings. We say that R0 is
a subring (or sub-ring) of R if R0 is a subset of R and the
operations on R0 (addition and multiplication) agree with
those on R .

Let R be a ring. Given a subset S ⊂ R , we can define
addition and multiplication on S by restricting the
corresponding operations from R to S . Then S is a subring
of R as soon as it is a ring.

Proposition 1 The subset S is a subring if and only if it
(i) contains the zero: 0 ∈ S ,
(ii) is closed under addition: x , y ∈ S =⇒ x + y ∈ S ,
(iii) is closed under taking the negative: x ∈ S =⇒ −x ∈ S ,
(iv) is closed under multiplication: x , y ∈ S =⇒ xy ∈ S .



Proposition 2 A subset S of a ring is a subring with respect
to the induced operations if and only if it is
(i) nonempty, and
(ii) closed under addition, subtraction and multiplication:
x , y ∈ S =⇒ x + y , x − y , xy ∈ S .

Proposition 3 A subset S of a ring R is a subring with
respect to the induced operations if and only if it is
(i) a subgroup of the additive group R , and
(ii) closed under multiplication: x , y ∈ S =⇒ xy ∈ S .

Proposition 4 A subset S of a ring R is a subring with
respect to the induced operations if and only if it is
(i) a subgroup of the additive group R , and
(ii) a subsemigroup of the multiplicative semigroup R .



Examples. • R = Z.

Since the additive group Z is cyclic, any subgroup is also
cyclic. The subgroups are the trivial group {0} and groups of
the form mZ = {mx | x ∈ Z}, where m is a positive integer.
All these subgroups are also subrings.

• R = Zn.

Since the additive group Zn is cyclic, any subgroup is also
cyclic. The subgroups are the trivial group {0} and groups of
the form mZn = {mx | x ∈ Zn}, where m is a proper divisor
of n. All these subgroups are also subrings.

Remark. If R0 is a subring of R , then the zero element in R0 is
the same as in R . On the other hand, if R and R0 are both
rings with unity, then the unity in R0 may not be the same as
in R . Indeed, in the ring Z10, the unity is 1, while in its
subring 2Z10 = {0, 2, 4, 6, 8}, the unity is 6.



Ideals

Definition. Suppose R is a ring. We say that a subset S ⊂ R

is a left ideal of R if
• S is a subgroup of the additive group R ,
• S is closed under left multiplication by any elements of R :

s ∈ S , x ∈ R =⇒ xs ∈ S .

We say that a subset S ⊂ R is a right ideal of R if
• S is a subgroup of the additive group R ,
• S is closed under right multiplication by any elements of R :

s ∈ S , x ∈ R =⇒ sx ∈ S .

All left ideals and right ideals of the ring R are also called
one-sided ideals. A two-sided ideal (or simply an ideal) of
the ring R is a subset S ⊂ R that is both a left ideal and a
right ideal. That is,
• S is a subgroup of the additive group R ,
• S is closed under multiplication by any elements of R :

s ∈ S , x ∈ R =⇒ xs, sx ∈ S .



Basic facts on the ideals

• Any left, right or two-sided ideal is a subring (with respect
to the induced operations).

• In a commutative ring, the notions of a left ideal, a right
ideal, and a two-sided ideal are equivalent.

• The trivial subring {0} is a two-sided ideal (all other ideals
are called nonzero).

• Any ring is a two-sided ideal of itself (all other ideals are
called proper).

• In a ring with unity, a one-sided ideal is proper if and only if
it does not contain the unity.

• For any element a of a ring R , the set Ra = {xa | x ∈ R}
is a left ideal (called principal).

• For any element a of a ring R , the set aR = {ax | x ∈ R}
is a right ideal (called principal).



Examples of ideals

• R = Z.

The subrings are {0} and mZ = {mx | x ∈ Z}, where m is a
positive integer. Each of them is a principal ideal.

• R = Zn.

The subrings are {0} and mZn = {mx | x ∈ Zn}, where m is
a proper divisor of n. Each of them is a principal ideal.

• R = Z× Z.

A subset {(m,m) | m ∈ Z} is a subring but not an ideal.
One can show that all ideals are principal.

• R = R1 × R2, a direct product of rings.

If I1 is a left ideal in R1 and I2 is a left ideal in R2, then I1 × I2
is a left ideal in R1 ×R2. In the case R1 and R2 are rings with
unity, any left ideal is of that form (the same for right ideals).



Examples of ideals

• R = F[x ], polynomials in one variable over a field.

For any polynomial p(x) there is a principal ideal
Ip = p(x)F[x ]. If p = 0 then Ip = {0}. Otherwise Ip consists
of all polynomials divisible by p(x). Conversely, suppose I is a
nonzero ideal in F[x ] and let p be a nonzero polynomial with
the least degree in I . For any f ∈ F[x ] we have f = pq + r ,
where q, r ∈ F[x ] and either r = 0 or deg(r) < deg(p). If
the polynomial f belongs to the ideal I , so does r = f − pq.
By the choice of p, this implies r = 0. It follows that I = Ip.

• R = F[x , y ], polynomials in two variables over a field.

Let R0 be the set of all polynomials in R with no constant
term. Elements of R0 can be written as xf (x , y ) + yg(x , y ),
where f , g ∈ F[x , y ]. It follows that R0 is an ideal. This
ideal is not principal. Indeed, R0 contains x and y but does
not contain 1.


