MATH 415

Modern Algebra I
Lecture 33:
Homomorphisms of rings (continued).

Homomorphism of rings

Definition. Let R and R^{\prime} be rings. A function $f: R \rightarrow R^{\prime}$ is called a homomorphism of rings if $f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)$ and $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ for all $r_{1}, r_{2} \in R$.

Properties of homomorphisms:

- If H^{\prime} is a subring of R^{\prime}, then $f^{-1}\left(H^{\prime}\right)$ is a subring of R.
- If I^{\prime} is a two-sided (resp. left, right) ideal in R^{\prime}, then $f^{-1}\left(I^{\prime}\right)$ is a two-sided (resp. left, right) ideal in R.
- The kernel $\operatorname{Ker}(f)=f^{-1}(0)$ is a two-sided ideal in R.
- If H is a subring of R, then $f(H)$ is a subring of R^{\prime}.
- If I is a two-sided (resp. left, right) ideal in R, then $f(I)$ is a two-sided (resp. left, right) ideal in $f(R)$, but may not be an ideal in R^{\prime}.

Examples of homomorphisms

- Trivial homomorphism.

Given any rings R and R^{\prime}, let $f(r)=0_{R^{\prime}}$ for all $r \in R$, where $0_{R^{\prime}}$ is the zero element in R^{\prime}. Then $f: R \rightarrow R^{\prime}$ is a homomorphism of rings.

- Residue modulo n of an integer.

For any $k \in \mathbb{Z}$ let $f(k)$ be the remainder of k after division by n. Then $f: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ is a homomorphism of rings.

- Homomorphisms of \mathbb{Z}.

Let R be any ring and i be any idempotent element in R. Then there exists a unique homomorphism $f: \mathbb{Z} \rightarrow R$ such that $f(1)=i$. It can be defined inductively: $f(1)=i$, $f(k+1)=f(k)+i$ for all $k \geq 1, f(0)=0$ and $f(-k)=-f(k)$ for all $k \geq 1$.

Suppose $f: R \rightarrow R^{\prime}$ is a homomorphism of rings. It induces homomorphisms of certain rings built from R and R^{\prime}.

- Rings of functions.

Given a nonempty set S, let $\mathcal{F}(S, R)$ be the ring of all functions $h: S \rightarrow R$. A homomorphism $\phi: \mathcal{F}(S, R) \rightarrow \mathcal{F}\left(S, R^{\prime}\right)$ is given by $\phi(h)=f \circ h$.

- Rings of polynomials.

A homomorphism $\phi: R[x] \rightarrow R^{\prime}[x]$ is given by $\phi\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right)=$ $f\left(a_{0}\right)+f\left(a_{1}\right) x+f\left(a_{2}\right) x^{2}+\cdots+f\left(a_{n}\right) x^{n}$.

- Rings of matrices.

Let $\mathcal{M}_{n, n}(R)$ be the ring of all $n \times n$ matrices with entries from R. A homomorphism $\phi: \mathcal{M}_{n, n}(R) \rightarrow \mathcal{M}_{n, n}\left(R^{\prime}\right)$ is given by $\phi\left(\left(a_{i j}\right)_{1 \leq i, j \leq n}\right)=\left(f\left(a_{i j}\right)\right)_{1 \leq i, j \leq n}$.

Given a nonempty set S and a ring R, let $\mathcal{F}(S, R)$ be the ring of all functions $h: S \rightarrow R$.

- Evaluation at a point.

Let us fix a point $x_{0} \in S$ and define a function $\phi: \mathcal{F}(S, R) \rightarrow R$ by $\phi(h)=h\left(x_{0}\right)$. Then ϕ is a homomorphism of rings.

- Restriction to a subset.

Let S_{0} be a nonempty subset of S. A homomorphism $\phi: \mathcal{F}(S, R) \rightarrow \mathcal{F}\left(S_{0}, R\right)$ is given by $\phi(h)=\left.h\right|_{S_{0}}$.

- Extension to a larger set.

Let S_{1} be a set that contains S. For any function $h: S \rightarrow R$ let $\phi(h)=h_{1}$, where the function $h_{1}: S_{1} \rightarrow R$ is defined by $h_{1}(x)=h(x)$ if $x \in S$ and $h_{1}(x)=0$ otherwise. Then $\phi: \mathcal{F}(S, R) \rightarrow \mathcal{F}\left(S_{1}, R\right)$ is a homomorphism of rings.

Another example

Let $\mathbb{Z}[i]=\{m+i n \mid m, n \in \mathbb{Z}\}$ be the ring of Gaussian integers. Consider a map $\phi: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{2}$ given by

$$
\phi(m+i n)=(m+n) \bmod 2 .
$$

Then ϕ is a homomorphism of rings.
Indeed, let $z_{1}=m_{1}+i n_{1}$ and $z_{2}=m_{2}+i n_{2}$ be two Gaussian integers. Then $z_{1}+z_{2}=\left(m_{1}+m_{2}\right)+i\left(n_{1}+n_{2}\right)$ and $z_{1} z_{2}=\left(m_{1} n_{1}-m_{2} n_{2}\right)+i\left(m_{1} n_{2}+m_{2} n_{1}\right)$. Observe that

$$
\left(m_{1}+m_{2}\right)+\left(n_{1}+n_{2}\right)=\left(m_{1}+n_{1}\right)+\left(m_{2}+n_{2}\right),
$$

which implies that $\phi\left(z_{1}+z_{2}\right)=\phi\left(z_{1}\right)+\phi\left(z_{2}\right)$. Further,

$$
\begin{aligned}
& \left(m_{1} n_{1}-m_{2} n_{2}\right)+\left(m_{1} n_{2}+m_{2} n_{1}\right)= \\
& \quad=\left(m_{1} n_{1}+m_{2} n_{2}+m_{1} n_{2}+m_{2} n_{1}\right)-2 m_{2} n_{2} \\
& \quad=\left(m_{1}+n_{1}\right)\left(m_{2}+n_{2}\right)-2 m_{2} n_{2},
\end{aligned}
$$

which implies that $\phi\left(z_{1} z_{2}\right)=\phi\left(z_{1}\right) \phi\left(z_{2}\right)$.

- $\phi: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{2}, \quad \phi(m+i n)=(m+n) \bmod 2$.

The kernel $\operatorname{Ker}(\phi)$ consists of all numbers of the form $m+n i$, where m and n are integers of the same parity (both even or both wrong). Since ϕ is a homomorphism of rings, we conclude that $\operatorname{Ker}(\phi)$ is an ideal in $\mathbb{Z}[i]$. In particular, it is a ring. However $\operatorname{Ker}(\phi)$ is not a ring with unity since it does not contain 1.

Remark. In general, if a subring R_{0} of a ring R with unity does not contain the unity 1_{R} of R, it may still have its own unity $1_{R_{0}}$. But this is never the case if R is a domain (and hence satisfies cancellation laws). Indeed, we would have $1_{R_{0}} 1_{R_{0}}=1_{R_{0}}=1_{R} 1_{R_{0}}$ and, after cancellation, $1_{R_{0}}=1_{R}$.

It is known that every ideal in $\mathbb{Z}[i]$ is principal. In this particular case, we have $\operatorname{Ker}(\phi)=(1+i) \mathbb{Z}[i]$. Indeed, if $m+i n \in \operatorname{Ker}(\phi)$, then $n=m+2 k$ for some integer k. Hence $m+i n=m+i(m+2 k)=m(1+i)+k(2 i)$
$=m(1+i)+k(1+i)^{2}=(1+i)(m+k+k i)$.

Isomorphism of rings

Definition. Let R and R^{\prime} be rings. A function $f: R \rightarrow R^{\prime}$ is called an isomorphism of rings if it is bijective and a homomorphism of rings.
A ring R is said to be isomorphic to a ring R^{\prime} if there exists an isomorphism of rings $f: R \rightarrow R^{\prime}$.

Theorem Isomorphism is an equivalence relation on the collection of all rings.
Theorem The following properties of rings are preserved under isomorphisms:

- commutativity,
- having the unity,
- having divisors of zero,
- being an integral domain,
- being a field.

Fundamental Theorem on Homomorphisms

Theorem Given a homomorphism $f: R \rightarrow R^{\prime}$, the factor ring $R / \operatorname{Ker}(f)$ is isomorphic to $f(R)$.

Proof. The factor ring is also a factor group. We know from group theory that an isomorphism of additive groups is given by $\phi(r+K)=f(r)$ for any $r \in R$, where $K=\operatorname{Ker}(f)$, the kernel of f. It remains to check that

$$
\phi\left(\left(r_{1}+K\right)\left(r_{2}+K\right)\right)=\phi\left(r_{1}+K\right) \phi\left(r_{2}+K\right)
$$

for all $r_{1}, r_{2} \in R$. Indeed, $\phi\left(\left(r_{1}+K\right)\left(r_{2}+K\right)\right)=\phi\left(r_{1} r_{2}+K\right)$ $=f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)=\phi\left(r_{1}+K\right) \phi\left(r_{2}+K\right)$.

Example:

- Factor ring $\mathbb{Z} / n \mathbb{Z}$ is isomorphic to \mathbb{Z}_{n}.

