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Lecture 33:
Homomorphisms of rings (continued).



Homomorphism of rings

Definition. Let R and R’ be rings. A function f: R — R’ is
called a homomorphism of rings if f(rn+r) = f(n)+f(r)
and f(nr)=f(n)f(r) forall n,necR.

Properties of homomorphisms:

e If H' is a subring of R’, then f~1(H’) is a subring of R.

o If /" is a two-sided (resp. left, right) ideal in R’, then
f=1(I') is a two-sided (resp. left, right) ideal in R.

e The kernel Ker(f) = f~1(0) is a two-sided ideal in R.

e If His a subring of R, then f(H) is a subring of R’.

e If | is a two-sided (resp. left, right) ideal in R, then f(/) is
a two-sided (resp. left, right) ideal in f(R), but may not be an
ideal in R'.



Examples of homomorphisms

e Trivial homomorphism.

Given any rings R and R', let f(r) = Og for all r € R, where
Ogr' is the zero element in R. Then f : R — R’ is a
homomorphism of rings.

e Residue modulo n of an integer.

For any k € Z let f(k) be the remainder of k after division by
n. Then f :7Z — Z, is a homomorphism of rings.

e Homomorphisms of Z.

Let R be any ring and i/ be any idempotent element in R.
Then there exists a unique homomorphism f : Z — R such
that f(1) =i. It can be defined inductively: f(1) =i,
f(k+1)=f(k)+i forall k>1, f(0)=0 and

f(—k) = —f(k) forall k> 1.



Suppose f : R — R’ is a homomorphism of rings. It induces
homomorphisms of certain rings built from R and R'.

e Rings of functions.

Given a nonempty set S, let F(S, R) be the ring of all
functions h: S — R. A homomorphism
¢:F(S,R) — F(S,R) is given by ¢(h) = foh.

e Rings of polynomials.

A homomorphism ¢ : R[x] — R[] is given by
¢(30 + aix + 32X2 4+ 4 aan) _
fao) + f(ar)x + f(ax)x® + - - + f(an)x".

e Rings of matrices.

Let M, ,(R) be the ring of all nxn matrices with entries
from R. A homomorphism ¢ : M, ,(R) — M, .(R’) is given
by &((ag)i<ij<n) = (F(ay))1<ijn:



Given a nonempty set S and a ring R, let F(S, R) be the ring
of all functions h: S — R.

e Evaluation at a point.

Let us fix a point xg € S and define a function
¢ :F(S,R) = R by ¢(h) = h(xp). Then ¢ is a
homomorphism of rings.

e Restriction to a subset.

Let Sp be a nonempty subset of S. A homomorphism
¢ : F(S,R) = F(So, R) is given by ¢(h) = h|s,.

e Extension to a larger set.

Let S; be a set that contains S. For any function h: S — R
let ¢(h) = hy, where the function hy; : S; — R is defined by
hi(x) = h(x) if x € S and hi(x) =0 otherwise. Then

¢ F(S,R) = F(51, R) is a homomorphism of rings.



Another example

Let Z[i] = {m+in| m,n € Z} be the ring of Gaussian
integers. Consider a map ¢ : Z[i] — Z, given by
¢(m+ in) = (m+ n)mod 2.

Then ¢ is a homomorphism of rings.

Indeed, let zz = my + in; and z, = my + in, be two Gaussian
integers. Then z; + z = (my + my) + i(ny + ny) and
72120 = (myny — mpny) + i(myny + mony). Observe that
(my + ma)+ (n 4+ o) = (my + m) + (M2 + m),
which implies that ¢(z; + z2) = ¢(z1) + ¢(z2). Further,
(m1n1 — m2n2) + (m1n2 + m2n1) =
= (m1n1 + myny, + miny + m2l71) — 2m2n2
— (ml + nl)(m2 -+ I72) — 2m2n2,

which implies that ¢(z122) = ¢(z1)d(2).



o ¢ :Z[il| = Zy, ¢(m—+in)=(m+ n)mod?2.

The kernel Ker(¢) consists of all numbers of the form

m + ni, where m and n are integers of the same parity (both
even or both wrong). Since ¢ is a homomorphism of rings, we
conclude that Ker(¢) is an ideal in Z[i]. In particular, it is a
ring. However Ker(¢) is not a ring with unity since it does
not contain 1.

Remark. In general, if a subring Ry of a ring R with unity
does not contain the unity 1z of R, it may still have its own
unity 1g,. But this is never the case if R is a domain (and
hence satisfies cancellation laws). Indeed, we would have
1r,1gr, = 1R, = 1glg, and, after cancellation, 1g, = 1g.

It is known that every ideal in Z[i] is principal. In this
particular case, we have Ker(¢) = (14 /)Z[i]. Indeed, if
m + in € Ker(¢), then n= m+ 2k for some integer k.
Hence m+in=m+i(m+2k) = m(1+ i) + k(2i)
=m(l+i)+k(1+i)>=(1+)(m+ k+ ki).



Isomorphism of rings

Definition. Let R and R’ be rings. A function f: R — R’ is
called an isomorphism of rings if it is bijective and a
homomorphism of rings.

A ring R is said to be isomorphic to a ring R’ if there exists
an isomorphism of rings f: R — R’.

Theorem Isomorphism is an equivalence relation on the
collection of all rings.

Theorem The following properties of rings are preserved
under isomorphisms:
e commutativity,
having the unity,
having divisors of zero,
being an integral domain,
being a field.



Fundamental Theorem on Homomorphisms

Theorem Given a homomorphism f: R — R/,
the factor ring R/ Ker(f) is isomorphic to f(R).
Proof. The factor ring is also a factor group. We know from
group theory that an isomorphism of additive groups is given

by ¢(r+ K) = f(r) forany r € R, where K = Ker(f), the
kernel of f. It remains to check that

qb((rl + K)(I’2 + K)) = qb(rl + K)qb(fQ + K)

forall n,rn € R. Indeed, ¢((n+ K)(r.+ K)) = ¢(rnr + K)
= f(nr) = f(n)f(r) = ¢(n + K)o(r + K).

Example:

e Factor ring Z/nZ is isomorphic to Z,.



