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Modern Algebra I

Lecture 33:
Homomorphisms of rings (continued).



Homomorphism of rings

Definition. Let R and R ′ be rings. A function f : R → R ′ is
called a homomorphism of rings if f (r1 + r2) = f (r1) + f (r2)
and f (r1r2) = f (r1)f (r2) for all r1, r2 ∈ R .

Properties of homomorphisms:

• If H ′ is a subring of R ′, then f −1(H ′) is a subring of R .

• If I ′ is a two-sided (resp. left, right) ideal in R ′, then
f −1(I ′) is a two-sided (resp. left, right) ideal in R .

• The kernel Ker(f ) = f −1(0) is a two-sided ideal in R .

• If H is a subring of R , then f (H) is a subring of R ′.

• If I is a two-sided (resp. left, right) ideal in R , then f (I ) is
a two-sided (resp. left, right) ideal in f (R), but may not be an
ideal in R ′.



Examples of homomorphisms

• Trivial homomorphism.

Given any rings R and R ′, let f (r) = 0R′ for all r ∈ R , where
0R′ is the zero element in R ′. Then f : R → R ′ is a
homomorphism of rings.

• Residue modulo n of an integer.

For any k ∈ Z let f (k) be the remainder of k after division by
n. Then f : Z → Zn is a homomorphism of rings.

• Homomorphisms of Z.

Let R be any ring and i be any idempotent element in R .
Then there exists a unique homomorphism f : Z → R such
that f (1) = i . It can be defined inductively: f (1) = i ,
f (k + 1) = f (k) + i for all k ≥ 1, f (0) = 0 and
f (−k) = −f (k) for all k ≥ 1.



Suppose f : R → R ′ is a homomorphism of rings. It induces
homomorphisms of certain rings built from R and R ′.

• Rings of functions.

Given a nonempty set S , let F(S ,R) be the ring of all
functions h : S → R . A homomorphism
φ : F(S ,R) → F(S ,R ′) is given by φ(h) = f ◦h.

• Rings of polynomials.

A homomorphism φ : R[x ] → R ′[x ] is given by
φ(a0 + a1x + a2x

2 + · · ·+ anx
n) =

f (a0) + f (a1)x + f (a2)x
2 + · · ·+ f (an)x

n.

• Rings of matrices.

Let Mn,n(R) be the ring of all n×n matrices with entries
from R . A homomorphism φ : Mn,n(R) → Mn,n(R

′) is given
by φ

(

(aij)1≤i ,j≤n

)

= (f (aij))1≤i ,j≤n.



Given a nonempty set S and a ring R , let F(S ,R) be the ring
of all functions h : S → R .

• Evaluation at a point.

Let us fix a point x0 ∈ S and define a function
φ : F(S ,R) → R by φ(h) = h(x0). Then φ is a
homomorphism of rings.

• Restriction to a subset.

Let S0 be a nonempty subset of S . A homomorphism
φ : F(S ,R) → F(S0,R) is given by φ(h) = h|S0 .

• Extension to a larger set.

Let S1 be a set that contains S . For any function h : S → R

let φ(h) = h1, where the function h1 : S1 → R is defined by
h1(x) = h(x) if x ∈ S and h1(x) = 0 otherwise. Then
φ : F(S ,R) → F(S1,R) is a homomorphism of rings.



Another example

Let Z[i ] = {m + in | m, n ∈ Z} be the ring of Gaussian
integers. Consider a map φ : Z[i ] → Z2 given by

φ(m + in) = (m + n)mod 2.

Then φ is a homomorphism of rings.

Indeed, let z1 = m1 + in1 and z2 = m2 + in2 be two Gaussian
integers. Then z1 + z2 = (m1 +m2) + i(n1 + n2) and
z1z2 = (m1n1 −m2n2) + i(m1n2 +m2n1). Observe that

(m1 +m2) + (n1 + n2) = (m1 + n1) + (m2 + n2),

which implies that φ(z1 + z2) = φ(z1) + φ(z2). Further,

(m1n1 −m2n2) + (m1n2 +m2n1) =
= (m1n1 +m2n2 +m1n2 +m2n1)− 2m2n2
= (m1 + n1)(m2 + n2)− 2m2n2,

which implies that φ(z1z2) = φ(z1)φ(z2).



• φ : Z[i ] → Z2, φ(m + in) = (m + n)mod 2.

The kernel Ker(φ) consists of all numbers of the form
m + ni , where m and n are integers of the same parity (both
even or both wrong). Since φ is a homomorphism of rings, we
conclude that Ker(φ) is an ideal in Z[i ]. In particular, it is a
ring. However Ker(φ) is not a ring with unity since it does
not contain 1.

Remark. In general, if a subring R0 of a ring R with unity
does not contain the unity 1R of R , it may still have its own
unity 1R0

. But this is never the case if R is a domain (and
hence satisfies cancellation laws). Indeed, we would have
1R0

1R0
= 1R0

= 1R1R0
and, after cancellation, 1R0

= 1R .

It is known that every ideal in Z[i ] is principal. In this
particular case, we have Ker(φ) = (1 + i)Z[i ]. Indeed, if
m + in ∈ Ker(φ), then n = m + 2k for some integer k.
Hence m + in = m + i(m + 2k) = m(1 + i) + k(2i)
= m(1 + i) + k(1 + i)2 = (1 + i)(m + k + ki).



Isomorphism of rings

Definition. Let R and R ′ be rings. A function f : R → R ′ is
called an isomorphism of rings if it is bijective and a
homomorphism of rings.

A ring R is said to be isomorphic to a ring R ′ if there exists
an isomorphism of rings f : R → R ′.

Theorem Isomorphism is an equivalence relation on the
collection of all rings.

Theorem The following properties of rings are preserved
under isomorphisms:
• commutativity,
• having the unity,
• having divisors of zero,
• being an integral domain,
• being a field.



Fundamental Theorem on Homomorphisms

Theorem Given a homomorphism f : R → R ′,
the factor ring R/Ker(f ) is isomorphic to f (R).

Proof. The factor ring is also a factor group. We know from
group theory that an isomorphism of additive groups is given
by φ(r + K ) = f (r) for any r ∈ R , where K = Ker(f ), the
kernel of f . It remains to check that

φ((r1 + K )(r2 + K )) = φ(r1 + K )φ(r2 + K )

for all r1, r2 ∈ R . Indeed, φ((r1 + K )(r2 + K )) = φ(r1r2 + K )
= f (r1r2) = f (r1)f (r2) = φ(r1 + K )φ(r2 + K ).

Example:

• Factor ring Z/nZ is isomorphic to Zn.


