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Modern Algebra I

Lecture 34:

Isomorphism of rings.

Prime and maximal ideals.



Isomorphism of rings

Definition. Let R and R ′ be rings. A function f : R → R ′ is
called an isomorphism of rings if it is bijective and a
homomorphism of rings.

A ring R is said to be isomorphic to a ring R ′ if there exists
an isomorphism of rings f : R → R ′.

Theorem Isomorphism is an equivalence relation on the
collection of all rings.

Theorem The following properties of rings are preserved
under isomorphisms:
• commutativity,
• having the unity,
• having divisors of zero,
• being an integral domain,
• being a field.



Fundamental Theorem on Homomorphisms

Theorem Given a homomorphism f : R → R ′,
the factor ring R/Ker(f ) is isomorphic to f (R).

Proof. The factor ring is also a factor group. We know from
group theory that an isomorphism of additive groups is given
by φ(r + K ) = f (r) for any r ∈ R , where K = Ker(f ), the
kernel of f . It remains to check that

φ((r1 + K )(r2 + K )) = φ(r1 + K )φ(r2 + K )

for all r1, r2 ∈ R . Indeed, φ((r1 + K )(r2 + K )) = φ(r1r2 + K )
= f (r1r2) = f (r1)f (r2) = φ(r1 + K )φ(r2 + K ).

Example. • f : Z → Zn, f (k) = k mod n.

We have Ker(f ) = nZ and f (Z) = Zn. Hence the factor
ring Z/nZ is isomorphic to Zn.



Matrix model of complex numbers

Consider a function φ : C → M2,2(R) given by

φ(x + iy ) =

(

x −y
y x

)

for all x , y ∈ R. Then φ is a homomorphism of rings.

Indeed, for any real numbers x , y , x ′ and y ′ we have
(x + iy ) + (x ′ + iy ′) = (x + x ′) + i(y + y ′) and

(

x −y
y x

)

+

(

x ′ −y ′

y ′ x ′

)

=

(

x + x ′ −(y + y ′)
y + y ′ x + x ′

)

.

Further, (x + iy )(x ′ + iy ′) = (xx ′ − yy ′) + i(xy ′ + yx ′) and
(

x −y
y x

)(

x ′ −y ′

y ′ x ′

)

=

(

xx ′ − yy ′ −(xy ′ + yx ′)
xy ′ + yx ′ xx ′ − yy ′

)

.

The kernel Ker(φ) is clearly trivial. It follows that the ring C

is isomorphic to φ(C). In particular, φ(C) is a field.



Prime ideals

Definition. A (two-sided) ideal I in a ring R is called prime if
for any elements x , y ∈ R we have

xy ∈ I =⇒ x ∈ I or y ∈ I .

Example. In the ring Z, every nontrivial proper ideal is of the
form nZ, where n > 1. This ideal is prime if and only if n is
a prime number.

The entire ring R is always a prime ideal of itself. The trivial
ideal {0} is prime if and only if the ring R has no divisors of
zero.

Theorem The ideal I is prime in the ring R if and only if the
factor ring R/I has no divisors of zero.

Proof (“if”). Suppose xy ∈ I while x , y ∈ R \ I . Then
x + I 6= 0 + I and y + I 6= 0 + I while (x + I )(y + I ) =
xy + I = I so that x + I and y + I are divisors of zero in R/I .



Maximal ideals

Definition. A (two-sided) ideal I in a ring R is called maximal

if I 6= R and for any ideal J satisfying I ⊂ J ⊂ R , we have
J = I or J = R .

Example. In the ring Z, every nontrivial proper ideal is of the
form nZ, where n > 1. This ideal is contained in an ideal
mZ if and only if m divides n. It follows that the ideal nZ is
maximal if and only if it is prime.

Theorem A proper ideal I in the ring R is maximal if and
only if the factor ring R/I has no (two-sided) ideals other
than the trivial ideal and itself.

Definition. A non-trivial ring R is called simple if it has no
ideals other than the trivial ideal and itself.

A ring is simple if and only if the trivial ideal {0} is maximal.



Theorem A proper ideal I in the ring R is maximal
if and only if the factor ring R/I is simple.

Proof. Consider a map φ : R → R/I given by φ(x) = x + I
for all x ∈ R . This map is a homomorphism of rings.

Suppose R/I has a nontrivial proper ideal J ′. Then
J = φ−1(J ′) is an ideal in R such that I ⊂ J ⊂ R . Since
the map φ is onto, it follows that J 6= I and J 6= R . In
particular, the ideal I is not maximal.

Conversely, assume that there is an ideal J in R such that
I ⊂ J ⊂ R while J 6= I and J 6= R . Then J ′ = φ(J) is an
ideal in φ(R) = R/I . The ideal J ′ is nontrivial since J is not
contained in the kernel Ker(φ) = I . Since I ⊂ J , it follows
that φ(J) = J ′ is disjoint from φ(R \ J). In particular, J ′ is
a proper ideal in R/I .



Theorem Suppose R is a commutative ring with

unity. Then R is simple if and only if it is a field.

Proof. Assume R is a field and let I be a nontrivial ideal in R .
Take any nonzero element a ∈ I . Since R is a field, this
element admits a multiplicative inverse a−1. Then for any
x ∈ R we have x = 1x = (aa−1)x = a(a−1x) ∈ I . That is,
I = R .

Now assume R is not a field. Then there is a nonzero element
a ∈ R that does not admit a multiplicative inverse. Hence
aR = {ax | x ∈ R}, which is an ideal in R , does not contain
the unity 1. In particular, aR is a proper ideal. It is
nontrivial since a = a · 1 ∈ aR .



Corollary 1 Suppose R is a commutative ring with
unity. Then a proper ideal I ⊂ R is maximal if and

only if the factor ring R/I is a field.

Corollary 2 Suppose R is a commutative ring with
unity. Then any maximal ideal in R is prime.

Remark. If the ring R is not commutative then the

corollaries (and the preceding theorem) may fail.
For example, in the ring Mn,n(R) of n×n matrices
with real entries (n ≥ 2), the trivial ideal is maximal

but not prime. Note that this ring does have
one-sided proper nontrivial ideals.



Ideals in the ring of polynomials

Theorem Let F be a field. Then any ideal in the
ring F[x ] is of the form

p(x)F[x ] = {p(x)q(x) | q(x) ∈ F[x ]}

for some polynomial p(x) ∈ F[x ].

Theorem Let F be a field and p(x) ∈ F[x ] be a
polynomial of positive degree. Then the following

conditions are equivalent:
• p(x) is irreducible over F,

• the ideal p(x)F[x ] is prime,
• the ideal p(x)F[x ] is maximal,

• the factor ring F[x ]/p(x)F[x ] is a field.


