MATH 415

Modern Algebra I

Lecture 35:
 Ideals in polynomial rings.

Problem. Let \mathbb{F}_{4} be a field with 4 elements and \mathbb{F}_{2} be its subfield with 2 elements. Find a polynomial $p \in \mathbb{F}_{2}[x]$ that has no zeros in \mathbb{F}_{2}, but has a zero in \mathbb{F}_{4}.

Let $\mathbb{F}_{4}=\{0,1, \alpha, \beta\}$. Then $\mathbb{F}_{2}=\{0,1\}$. Since $\{1, \alpha, \beta\}$ is a multiplicative group (of order 3), it follows from Lagrange's Theorem that $x^{3}=1$ for all $x \in\{1, \alpha, \beta\}$. In other words, $1, \alpha$ and β are zeros of the polynomial $q(x)=x^{3}-1$.
We have $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$, which holds over any field. It follows that α and β are also zeros of the polynomial $p(x)=x^{2}+x+1$. Note that $p(0)=p(1)=1 \neq 0$.

Ideals in the ring of polynomials

Theorem Let \mathbb{F} be a field. Then any ideal in the ring $\mathbb{F}[x]$ is of the form

$$
p(x) \mathbb{F}[x]=\{p(x) q(x) \mid q(x) \in \mathbb{F}[x]\}
$$

for some polynomial $p(x) \in \mathbb{F}[x]$.
Theorem Let \mathbb{F} be a field and $p(x) \in \mathbb{F}[x]$ be a polynomial of positive degree. Then the following conditions are equivalent:

- $p(x)$ is irreducible over \mathbb{F},
- the ideal $p(x) \mathbb{F}[x]$ is prime,
- the ideal $p(x) \mathbb{F}[x]$ is maximal,
- the factor ring $\mathbb{F}[x] / p(x) \mathbb{F}[x]$ is a field.

Examples. $\bullet \mathbb{F}=\mathbb{R}, p(x)=x^{2}+1$.

The polynomial $p(x)=x^{2}+1$ is irreducible over \mathbb{R}. Hence the factor ring $\mathbb{R}[x] / I$, where $I=\left(x^{2}+1\right) \mathbb{R}[x]$, is a field. Any element of $\mathbb{R}[x] / I$ is a coset $q(x)+I$. It consists of all polynomials in $\mathbb{R}[x]$ leaving a particular remainder when divided by $p(x)$. Therefore it is uniquely represented as $a+b x+l$ for some $a, b \in \mathbb{R}$. We obtain that

$$
\begin{aligned}
& (a+b x+I)+\left(a^{\prime}+b^{\prime} x+I\right)=\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) x+I, \\
& (a+b x+I)\left(a^{\prime}+b^{\prime} x+I\right)=a a^{\prime}+\left(a b^{\prime}+b a^{\prime}\right) x+b b^{\prime} x^{2}+I \\
& =\left(a a^{\prime}-b b^{\prime}\right)+\left(a b^{\prime}+b a^{\prime}\right) x+b b^{\prime}\left(x^{2}+1\right)+I \\
& \quad=\left(a a^{\prime}-b b^{\prime}\right)+\left(a b^{\prime}+b a^{\prime}\right) x+I .
\end{aligned}
$$

It follows that a map $\phi: \mathbb{C} \rightarrow \mathbb{R}[x] / I$ given for all $a, b \in \mathbb{R}$ by $\phi(a+b i)=a+b x+l$ is an isomorphism of rings. Thus $\mathbb{R}[x] / I$ is a model of complex numbers. Note that the imaginary unit i corresponds to $x+I$, the coset of the monomial x.

- $\mathbb{F}=\mathbb{Z}_{2}, p(x)=x^{2}+x+1$.

We have $p(0)=p(1)=1 \neq 0$ so that p has no zeros in \mathbb{Z}_{2}. Since $\operatorname{deg}(p) \leq 3$, it follows that the polynomial $p(x)$ is irreducible over \mathbb{Z}_{2}. Therefore $\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right) \mathbb{Z}_{2}[x]$ is a field. This factor ring consists of 4 elements: $0,1, \alpha$ and $\alpha+1$, where $\alpha=x+p(x) \mathbb{Z}_{2}[x]$. Observe that α and $\alpha+1$ are zeros of the polynomial p.

- $\mathbb{F}=\mathbb{Z}_{2}, p(x)=x^{3}+x+1$.

There are two polynomials of degree 3 irreducible over \mathbb{Z}_{2} : $p(x)=x^{3}+x+1$ and $q(x)=p(x-1)=x^{3}+x^{2}+1$. In particular, the factor ring $\mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right) \mathbb{Z}_{2}[x]$ is a field. It consists of 8 elements: $0,1, \beta, \beta+1, \beta^{2}, \beta^{2}+1, \beta^{2}+\beta$ and $\beta^{2}+\beta+1$, where $\beta=x+p(x) \mathbb{Z}_{2}[x]$. Observe that β, β^{2} and $\beta^{2}+\beta$ are zeros of the polynomial p while $\beta+1$, $\beta^{2}+1$ and $\beta^{2}+\beta+1$ are zeros of the polynomial \boldsymbol{q}.

