MATH 415

Lecture 36: Factorization in integral domains.

Modern Algebra I

Unity and units

Let R be an **integral domain**, i.e., a commutative ring with the multiplicative identity element and no divisors of zero. The multiplicative identity, denoted 1, is called the **unity** of R. Any element of R that has a multiplicative inverse is called a **unit**. All units of R form a multiplicative group.

Examples. • Integers \mathbb{Z} .

Units are 1 and -1.

- Gaussian integers $\mathbb{Z}[\sqrt{-1}] = \{m + ni \in \mathbb{C} \mid m, n \in \mathbb{Z}\}.$ Units are 1, -1, i, and -i.
- F: a field.

Units are all nonzero elements.

• $\mathbb{F}[x]$: polynomials in a variable x over a field \mathbb{F} . Units are all nonzero polynomials of degree 0.

Irreducible elements and factorization

Let R be an integral domain. A non-zero, non-unit element of R is called **irreducible** if it cannot be represented as a product of two non-units.

The ring R is called a **factorization ring** if every non-zero, non-unit element x can be expanded into a product $x = q_1 q_2 \dots q_k$ of irreducible elements. Equivalently, $x = uq_1 q_2 \dots q_k$, where u is a unit and each q_i is irreducible.

Two non-zero elements $x, y \in R$ are called **associates** of each other if x divides y and y divides x. An equivalent condition is that y = ux for some unit u. Any associate of a unit (resp. non-unit, irreducible) element is also a unit (resp. non-unit, irreducible).

Suppose $x = uq_1q_2 \dots q_k$, where u is a unit and each q_i is irreducible. If q'_1, q'_2, \dots, q'_k are associates of q_1, q_2, \dots, q_k , resp., then $x = u'q'_1q'_2 \dots q'_k$ for some unit u'.

Examples of factorization rings

• Integers \mathbb{Z} .

Units are 1 and -1. Irreducible elements are primes and negative primes. Factorization into irreducible factors is, up to a sign, the usual prime factorization. It is unique up to rearranging the factors and changing their signs. For example, $-6 = (-1) \cdot 2 \cdot 3 = (-2) \cdot 3 = 2 \cdot (-3) = (-3) \cdot 2$.

• Polynomials $\mathbb{F}[x]$ over a field.

Units are all nonzero constants. Irreducible elements are exactly irreducible polynomials. Factorization into irreducible factors is unique up to rearranging the factors and multiplying them by constants.

Example of a non-factorization ring

• $\mathbb{Z} + x\mathbb{Q}[x]$: polynomials over \mathbb{Q} with integer constant terms.

This is a subring of $\mathbb{Q}[x]$. Units are 1 and -1. Irreducible elements are of the form $\pm p$, where p is a prime number, or $\pm q(x)$, where q(x) is an irreducible polynomial over \mathbb{Q} with the constant term 1. No element with zero constant term is irreducible; for example, $x = 2 \cdot \frac{1}{2}x$.

Integral norm

Let R be an integral domain. A function $N: R \setminus \{0\} \to \mathbb{Z}$ is called an **integral norm** on R if

- N(xy) = N(x)N(y) for all $x, y \in R \setminus \{0\}$,
- N(x) > 0 for all $x \in R \setminus \{0\}$,
- N(x) = 1 if and only if x is a unit.

Theorem If R admits an integral norm N then it is a factorization ring.

Proof: The proof is by strong induction on n = N(x), where x is a non-unit. Assume that factorization is possible for all non-units y with N(y) < n. If x is irreducible, we are done. Otherwise x = yz, where y and z are non-units. Then N(y), N(z) > 1 and N(y)N(z) = n, hence N(y), N(z) < n. By the inductive assumption, $y = uq_1q_2 \dots q_k$ and $z = u'q'_1q'_2 \dots q'_s$, where all q_i and q'_j are irreducible and u, u' are units. Then $x = (uu')q_1q_2 \dots q_kq'_1q'_2 \dots q'_s$, which completes the induction step.

Examples of integral norms

• Integers \mathbb{Z} .

$$N(n) = |n|$$
.

- $\mathbb{F}[x]$: polynomials in a variable x over a field \mathbb{F} . $N(p) = 2^{\deg(p)}$.
- Gaussian integers $\mathbb{Z}[\sqrt{-1}] = \{m + ni \in \mathbb{C} \mid m, n \in \mathbb{Z}\}.$ $N(m+ni) = (m+ni)(\overline{m+ni}) = m^2 + n^2.$ If N(m+ni) = 1 then $(m+ni)^{-1} = m-ni \in \mathbb{Z}[\sqrt{-1}]$ so that m+ni is a unit. Not every prime integer is irreducible in this ring. For example, 2 = (1+i)(1-i), 5 = (2+i)(2-i).
- $\mathbb{Z}[\sqrt{3}] = \{m + n\sqrt{3} \mid m, n \in \mathbb{Z}\}.$ $N(m + n\sqrt{3}) = |(m + n\sqrt{3})(m n\sqrt{3})| = |m^2 3n^2|.$ It turns out that the map $\phi : \mathbb{Z}[\sqrt{3}] \to \mathbb{Z}[\sqrt{3}]$ defined by $\phi(m + n\sqrt{3}) = m n\sqrt{3}$ for all $m, n \in \mathbb{Z}$ is an automorphism of the ring $\mathbb{Z}[\sqrt{3}].$

Unique factorization

Let R be a factorization ring. We say that R is a **unique** factorization domain if factorization of any non-unit element of R into a product of irreducible elements is unique up to rearranging the factors and multiplying them by units.

A non-zero, non-unit element $x \in R$ is called **prime** if, whenever x divides a product yz of two non-zero elements, it actually divides one of the factors y and z.

Proposition Every prime element is irreducible.

Theorem A factorization ring is a unique factorization domain if and only if every irreducible element is prime.

Example of non-unique factorization:

•
$$\mathbb{Z}[\sqrt{-5}] = \{m + ni\sqrt{5} \in \mathbb{C} \mid m, n \in \mathbb{Z}\}.$$

Integral norm: $N(z) = z\overline{z}$, $N(m + ni\sqrt{5}) = m^2 + 5n^2$. This norm can never equal 2 or 3. Hence any element of norm 4, 6 or 9 is irreducible. Now $6 = 2 \cdot 3 = (1 + i\sqrt{5})(1 - i\sqrt{5})$.