MATH 415 Modern Algebra I

Lecture 37: Principal ideal domains. Euclidean algorithm.

Generators of an ideal

Let R be an integral domain.

Theorem 1 Suppose I_{α} , $\alpha \in A$ is a nonempty collection of ideals in R. Then the intersection $\bigcap_{\alpha} I_{\alpha}$ is also an ideal in R.

Let S be a set (or a list) of some elements of R. The **ideal** generated by S, denoted (S) or $\langle S \rangle$, is the smallest ideal in R that contains S.

Theorem 2 The ideal (S) is well defined. Indeed, it is the intersection of all ideals that contain S.

Theorem 3 If $S = \{a_1, a_2, \ldots, a_k\}$ then the ideal (S) consists of all elements of the form $r_1a_1 + r_2a_2 + \cdots + r_ka_k$, where $r_1, r_2, \ldots, r_k \in R$.

An ideal (a) = aR generated by a single element is called **principal**. The ring *R* is called a **principal ideal domain (PID)** if every ideal is principal.

Greatest common divisor

Definition. Let R be an integral domain. Given nonzero elements $a_1, a_2, \ldots, a_k \in R$, their greatest common divisor $gcd(a_1, a_2, \ldots, a_k)$ is an element $c \in R$ such that

• c is a common divisor of a_1, a_2, \ldots, a_k , i.e., $a_i = cq_i$ for some $q_i \in R$, $1 \le i \le k$,

• any common divisor of a_1, a_2, \ldots, a_k is a divisor of c as well.

If $gcd(a_1, a_2, ..., a_k)$ exists then it is unique up to multiplication by a unit.

Note that an element $c \in R$ is a common divisor of the elements a_1, a_2, \ldots, a_k if and only if all these elements belong to the principal ideal cR. Another common divisor d is a divisor of c if and only if $cR \subset dR$. Therefore $gcd(a_1, a_2, \ldots, a_k)$, if it exists, is a generator of the smallest principal ideal containing a_1, a_2, \ldots, a_k .

Theorem If *R* is a principal ideal domain, then (i) the greatest common divisor $gcd(a_1, a_2, ..., a_k)$ exists for any nonzero elements $a_1, a_2, ..., a_k \in R$; (ii) $gcd(a_1, a_2, ..., a_k) = r_1a_1 + r_2a_2 + \cdots + r_ka_k$ for some $r_1, r_2, ..., r_k \in R$.

Proof. Consider an ideal $I = (a_1, a_2, \ldots, a_k)$ generated by the elements a_1, a_2, \ldots, a_k . Since the ring R is a principal ideal domain, we have I = cR for some $c \in R$. It follows that $c = \gcd(a_1, a_2, \ldots, a_k)$. Moreover, since $c \in I$, we have $c = r_1a_1 + r_2a_2 + \cdots + r_ka_k$ for some $r_1, r_2, \ldots, r_k \in R$.

Theorem If a principal ideal domain is a factorization ring, then it is also a unique factorization domain.

Relatively prime elements

Definition. Let R be an integral domain. Nonzero elements $a, b \in R$ are called **relatively prime** (or **coprime**) if gcd(a, b) = 1.

Theorem Suppose *R* is a principal ideal domain. If a nonzero element $c \in R$ is divisible by two coprime elements *a* and *b*, then it is divisible by their product *ab*.

Proof: By assumption, $c = aq_1$ and $c = bq_2$ for some $q_1, q_2 \in R$. Since gcd(a, b) = 1 and R is a principal ideal domain, it follows that $r_1a + r_2b = 1$ for some $r_1, r_2 \in R$. Then $c = c(r_1a + r_2b) = r_1ca + r_2cb = r_1q_2ab + r_2q_1ab = (r_1q_2 + r_2q_1)ab$, which implies that c is divisible by ab.

Corollary Suppose *R* is a principal ideal domain. If a nonzero element $c \in R$ is divisible by pairwise coprime elements a_1, a_2, \ldots, a_k , then it is divisible by their product $a_1a_2 \ldots a_k$.

Euclidean rings

Let *R* be an integral domain. A function $E : R \setminus \{0\} \to \mathbb{Z}_+$ is called a **Euclidean function** on *R* if for any $x, y \in R \setminus \{0\}$ we have x = qy + rfor some $q, r \in R$ such that r=0 or E(r) < E(y). The ring *R* is called a **Euclidean ring** (or **Euclidean domain**) if it admits a Euclidean

Euclidean domain) if it admits a Euclidean function. In a Euclidean ring, division with remainder is well defined (not necessarily uniquely).

Theorem Any Euclidean ring is a principal ideal domain.

Idea of the proof. Suppose *I* is a nonzero ideal in a Euclidean ring *R*. Let *a* be an element of *I* with the least value of the Euclidean function. Then I = aR.

Euclidean algorithm

Lemma 1 If *b* divides *a* then gcd(a, b) = b.

Lemma 2 Suppose *R* is a Euclidean ring. If *b* does not divide *a* and *r* is the remainder of *a* when divided by *b*, then gcd(a, b) = gcd(b, r).

Idea of the proof: Since a = bq + r for some $q \in R$, the pairs a, b and b, r have the same common divisors.

Theorem Suppose *R* is a Euclidean ring. Given two nonzero elements $a, b \in R$, there is a sequence r_1, r_2, \ldots, r_k such that $r_1 = a$, $r_2 = b$, r_i is the remainder of r_{i-2} when divided by r_{i-1} for $3 \le i \le k$, and r_k divides r_{k-1} . Then $gcd(a, b) = r_k$.

```
Example. R = \mathbb{Z}, a = 1356, b = 744.
gcd(a, b) = ?
We obtain
```

```
\begin{array}{l} 1356 = 744 \cdot 1 + 612, \\ 744 = 612 \cdot 1 + 132, \\ 612 = 132 \cdot 4 + 84, \\ 132 = 84 \cdot 1 + 48, \\ 84 = 48 \cdot 1 + 36, \\ 48 = 36 \cdot 1 + 12, \\ 36 = 12 \cdot 3. \end{array}
```

Thus gcd(1356, 744) = 12.

Problem. Find an integer solution of the equation 1356m + 744n = 12.

Let us use calculations done for the Euclidean algorithm applied to 1356 and 744.

 $1356 = 744 \cdot 1 + 612$ $\implies 612 = 1 \cdot 1356 - 1 \cdot 744$ $744 = 612 \cdot 1 + 132$ $\implies 132 = 744 - 612 = -1 \cdot 1356 + 2 \cdot 744$ $612 = 132 \cdot 4 + 84$ $\implies 84 = 612 - 4 \cdot 132 = 5 \cdot 1356 - 9 \cdot 744$ $132 = 84 \cdot 1 + 48$ \implies 48 = 132 - 84 = -6 · 1356 + 11 · 744 $84 = 48 \cdot 1 + 36$ \implies 36 = 84 - 48 = 11 · 1356 - 20 · 744 $48 = 36 \cdot 1 + 12$ $\implies 12 = 48 - 36 = -17 \cdot 1356 + 31 \cdot 744$ Thus m = -17, n = 31 is a solution.

Alternative solution. Consider a matrix $\begin{pmatrix} 1 & 0 & | & 1356 \\ 0 & 1 & | & 744 \end{pmatrix}$, which is the augmented matrix of a system $\begin{cases} x = 1356, \\ y = 744. \end{cases}$

We are going to apply elementary row operations to this matrix until we get 12 in the rightmost column.

$$\begin{pmatrix} 1 & 0 & | & 1356 \\ 0 & 1 & | & 744 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 612 \\ 0 & 1 & | & 744 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 612 \\ -1 & 2 & | & 132 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 5 & -9 & | & 84 \\ -1 & 2 & | & 132 \end{pmatrix} \rightarrow \begin{pmatrix} 5 & -9 & | & 84 \\ -6 & 11 & | & 48 \end{pmatrix} \rightarrow \begin{pmatrix} 11 & -20 & | & 36 \\ -6 & 11 & | & 48 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 11 & -20 & | & 36 \\ -17 & 31 & | & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 62 & -113 & | & 0 \\ -17 & 31 & | & 12 \end{pmatrix}$$

Hence the above system is equivalent to

$$\begin{cases} 62x - 113y = 0, \\ -17x + 31y = 12. \end{cases}$$

Thus m = -17, n = 31 is a solution to 1356m + 744n = 12.

Problem. Find all common roots of real polynomials $p(x) = x^4 + 2x^3 - x^2 - 2x + 1$ and $q(x) = x^4 + x^3 + x - 1$.

Common roots of p and q are exactly roots of their greatest common divisor gcd(p,q). We can find gcd(p,q) using the Euclidean algorithm.

First we divide *p* by *q*:
$$x^4 + 2x^3 - x^2 - 2x + 1 = (x^4 + x^3 + x - 1)(1) + x^3 - x^2 - 3x + 2.$$

Next we divide q by the remainder $r_1(x) = x^3 - x^2 - 3x + 2$: $x^4 + x^3 + x - 1 = (x^3 - x^2 - 3x + 2)(x + 2) + 5x^2 + 5x - 5$.

Next we divide r_1 by the remainder $r_2(x) = 5x^2 + 5x - 5$: $x^3 - x^2 - 3x + 2 = (5x^2 + 5x - 5)(\frac{1}{5}x - \frac{2}{5}).$

Since r_2 divides r_1 , it follows that

$$gcd(p,q) = gcd(q,r_1) = gcd(r_1,r_2) = r_2.$$

The polynomial $r_2(x) = 5x^2 + 5x - 5$ has roots $(-1 - \sqrt{5})/2$ and $(-1 + \sqrt{5})/2$.