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Lecture 37:
Principal ideal domains.

Euclidean algorithm.



Generators of an ideal

Let R be an integral domain.

Theorem 1 Suppose I
α
, α ∈ A is a nonempty collection of

ideals in R . Then the intersection
⋂

α
I
α
is also an ideal in R .

Let S be a set (or a list) of some elements of R . The ideal
generated by S , denoted (S) or 〈S〉, is the smallest ideal in
R that contains S .

Theorem 2 The ideal (S) is well defined. Indeed, it is the
intersection of all ideals that contain S .

Theorem 3 If S = {a1, a2, . . . , ak} then the ideal (S)
consists of all elements of the form r1a1 + r2a2 + · · ·+ rkak ,
where r1, r2, . . . , rk ∈ R .

An ideal (a) = aR generated by a single element is called
principal. The ring R is called a principal ideal domain
(PID) if every ideal is principal.



Greatest common divisor

Definition. Let R be an integral domain. Given nonzero
elements a1, a2, . . . , ak ∈ R , their greatest common divisor
gcd(a1, a2, . . . , ak) is an element c ∈ R such that

• c is a common divisor of a1, a2, . . . , ak , i.e., ai = cqi for
some qi ∈ R , 1 ≤ i ≤ k,

• any common divisor of a1, a2, . . . , ak is a divisor of c as
well.

If gcd(a1, a2, . . . , ak) exists then it is unique up to
multiplication by a unit.

Note that an element c ∈ R is a common divisor of the
elements a1, a2, . . . , ak if and only if all these elements belong
to the principal ideal cR . Another common divisor d is a
divisor of c if and only if cR ⊂ dR . Therefore
gcd(a1, a2, . . . , ak), if it exists, is a generator of the smallest
principal ideal containing a1, a2, . . . , ak .



Theorem If R is a principal ideal domain, then
(i) the greatest common divisor gcd(a1, a2, . . . , ak)

exists for any nonzero elements a1, a2, . . . , ak ∈ R;
(ii) gcd(a1, a2, . . . , ak) = r1a1 + r2a2 + · · ·+ rkak

for some r1, r2, . . . , rk ∈ R.

Proof. Consider an ideal I = (a1, a2, . . . , ak) generated by the
elements a1, a2, . . . , ak . Since the ring R is a principal ideal
domain, we have I = cR for some c ∈ R . It follows that
c = gcd(a1, a2, . . . , ak). Moreover, since c ∈ I , we have
c = r1a1 + r2a2 + · · ·+ rkak for some r1, r2, . . . , rk ∈ R .

Theorem If a principal ideal domain is a

factorization ring, then it is also a unique
factorization domain.



Relatively prime elements

Definition. Let R be an integral domain. Nonzero elements
a, b ∈ R are called relatively prime (or coprime) if
gcd(a, b) = 1.

Theorem Suppose R is a principal ideal domain. If a
nonzero element c ∈ R is divisible by two coprime elements
a and b, then it is divisible by their product ab.

Proof: By assumption, c = aq1 and c = bq2 for some
q1, q2 ∈ R . Since gcd(a, b) = 1 and R is a principal ideal
domain, it follows that r1a + r2b = 1 for some r1, r2 ∈ R .
Then c = c(r1a + r2b) = r1ca + r2cb = r1q2ab + r2q1ab

= (r1q2 + r2q1)ab, which implies that c is divisible by ab.

Corollary Suppose R is a principal ideal domain. If a nonzero
element c ∈ R is divisible by pairwise coprime elements
a1, a2, . . . , ak , then it is divisible by their product a1a2 . . . ak .



Euclidean rings

Let R be an integral domain. A function

E : R \ {0} → Z+ is called a Euclidean function
on R if for any x , y ∈ R \ {0} we have x = qy + r

for some q, r ∈ R such that r=0 or E (r)<E (y).

The ring R is called a Euclidean ring (or
Euclidean domain) if it admits a Euclidean

function. In a Euclidean ring, division with
remainder is well defined (not necessarily uniquely).

Theorem Any Euclidean ring is a principal ideal

domain.

Idea of the proof. Suppose I is a nonzero ideal in a Euclidean
ring R . Let a be an element of I with the least value of the
Euclidean function. Then I = aR .



Euclidean algorithm

Lemma 1 If b divides a then gcd(a, b) = b.

Lemma 2 Suppose R is a Euclidean ring. If b
does not divide a and r is the remainder of a when

divided by b, then gcd(a, b) = gcd(b, r).

Idea of the proof: Since a = bq + r for some q ∈ R , the
pairs a, b and b, r have the same common divisors.

Theorem Suppose R is a Euclidean ring. Given
two nonzero elements a, b ∈ R, there is a sequence

r1, r2, . . . , rk such that r1 = a, r2 = b, ri is the
remainder of ri−2 when divided by ri−1 for 3≤ i≤k ,

and rk divides rk−1. Then gcd(a, b) = rk .



Example. R = Z, a = 1356, b = 744.

gcd(a, b) = ?

We obtain

1356 = 744 · 1 + 612,

744 = 612 · 1 + 132,
612 = 132 · 4 + 84,
132 = 84 · 1 + 48,

84 = 48 · 1 + 36,
48 = 36 · 1 + 12,

36 = 12 · 3.
Thus gcd(1356, 744) = 12.



Problem. Find an integer solution of the equation

1356m + 744n = 12.

Let us use calculations done for the Euclidean algorithm
applied to 1356 and 744.

1356 = 744 · 1 + 612
=⇒ 612 = 1 · 1356− 1 · 744
744 = 612 · 1 + 132
=⇒ 132 = 744− 612 = −1 · 1356 + 2 · 744
612 = 132 · 4 + 84
=⇒ 84 = 612− 4 · 132 = 5 · 1356− 9 · 744
132 = 84 · 1 + 48
=⇒ 48 = 132− 84 = −6 · 1356 + 11 · 744
84 = 48 · 1 + 36
=⇒ 36 = 84− 48 = 11 · 1356− 20 · 744
48 = 36 · 1 + 12
=⇒ 12 = 48− 36 = −17 · 1356 + 31 · 744
Thus m = −17, n = 31 is a solution.



Alternative solution. Consider a matrix

(

1 0 1356
0 1 744

)

,

which is the augmented matrix of a system

{

x = 1356,
y = 744.

We are going to apply elementary row operations to this
matrix until we get 12 in the rightmost column.
(

1 0 1356
0 1 744

)

→
(

1 −1 612
0 1 744

)

→
(

1 −1 612
−1 2 132

)

→
(

5 −9 84
−1 2 132

)

→
(

5 −9 84
−6 11 48

)

→
(

11 −20 36
−6 11 48

)

→
(

11 −20 36
−17 31 12

)

→
(

62 −113 0
−17 31 12

)

Hence the above system is equivalent to
{

62x − 113y = 0,
−17x + 31y = 12.

Thus m = −17, n = 31 is a solution to 1356m + 744n = 12.



Problem. Find all common roots of real polynomials
p(x) = x4 + 2x3 − x2 − 2x + 1 and q(x) = x4 + x3 + x − 1.

Common roots of p and q are exactly roots of their greatest
common divisor gcd(p, q). We can find gcd(p, q) using the
Euclidean algorithm.

First we divide p by q: x4 + 2x3 − x2 − 2x + 1 =
= (x4 + x3 + x − 1)(1) + x3 − x2 − 3x + 2.

Next we divide q by the remainder r1(x) = x3 − x2 − 3x + 2:
x4 + x3 + x − 1 = (x3 − x2 − 3x + 2)(x + 2) + 5x2 + 5x − 5.

Next we divide r1 by the remainder r2(x) = 5x2 + 5x − 5:
x3 − x2 − 3x + 2 = (5x2 + 5x − 5)(1

5
x − 2

5
).

Since r2 divides r1, it follows that

gcd(p, q) = gcd(q, r1) = gcd(r1, r2) = r2.

The polynomial r2(x) = 5x2 + 5x − 5 has roots
(−1 −

√
5)/2 and (−1 +

√
5)/2.


