Homework assignment \#11

Problem 1 (2 pts). Consider the ring $\mathbb{Z} \times \mathbb{Z}$.
(i) Show that all ideals of $\mathbb{Z} \times \mathbb{Z}$ are of the form $m \mathbb{Z} \times n \mathbb{Z}$, where m and n are nonnegative integers. [Hint: use Problem 1 from HW \#10.]
(ii) Determine which ideals of $\mathbb{Z} \times \mathbb{Z}$ are maximal.
(iii) Determine which ideals of $\mathbb{Z} \times \mathbb{Z}$ are prime.

Problem 2 (2 pts). Consider the ring $\mathcal{F}(S, \mathbb{F})$ of all functions $h: S \rightarrow \mathbb{F}$, where S is a nonempty set and \mathbb{F} is a field.
(i) Given a nonempty subset $S_{0} \subset S$, let $I_{S_{0}}$ be the set of all functions $h: S \rightarrow \mathbb{F}$ such that $h(x)=0$ for $x \in S_{0}$. Show that $I_{S_{0}}$ is an ideal in $\mathcal{F}(S, \mathbb{F})$. [Hint: $I_{S_{0}}$ is the kernel of a certain homomorphism.]
(ii) Show that for any point $x_{0} \in S$, the ideal $I_{\left\{x_{0}\right\}}$ is maximal.
(iii) Prove that the factor ring $\mathcal{F}(S, \mathbb{F}) / I_{\left\{x_{0}\right\}}$ is isomorphic to \mathbb{F}.

Problem 3. Suppose \mathbb{F}_{k} is a finite field with k elements. Let $p(x) \in \mathbb{F}_{k}[x]$ be an irreducible polynomial of degree n. Find the number of elements in the field $\mathbb{F}_{k}[x] / p(x) \mathbb{F}_{k}[x]$.

Problem 4 (3 pts). Consider a ring of polynomials $\mathbb{Z}_{2}[x]$.
(i) Show that $p(x)=x^{3}+x+1$ and $q(x)=x^{3}+x^{2}+1$ are the only irreducible polynomials of degree 3 in $\mathbb{Z}_{2}[x]$.
(ii) Show that $q(x)=p(x-1)$ in $F[x]$ for any field F of characteristic 2.
(iii) Let $\beta=x+p(x) \mathbb{Z}_{2}[x]$. Show that $0,1, \beta, \beta+1, \beta^{2}, \beta^{2}+1, \beta^{2}+\beta, \beta^{2}+\beta+1$ is a complete list of elements of the field $\mathbb{Z}_{2}[x] / p(x) \mathbb{Z}_{2}[x]$.
(iv) Show that $p(\beta)=p\left(\beta^{2}\right)=p\left(\beta^{2}+\beta\right)=0$ and $q(\beta+1)=q\left(\beta^{2}+1\right)=q\left(\beta^{2}+\beta+1\right)=0$.

Problem 5. Consider the ring $\mathbb{Z}[\sqrt{3}]=\{m+n \sqrt{3} \mid m, n \in \mathbb{Z}\}$. Prove that the function $\phi: \mathbb{Z}[\sqrt{3}] \rightarrow \mathbb{Z}[\sqrt{3}]$ given by $\phi(m+n \sqrt{3})=m-n \sqrt{3}$ for all $m, n \in \mathbb{Z}$ is an automorphism of this ring.

Problem 6. A non-zero, non-unit element of an integral domain is called irreducible if it cannot be represented as a product of two non-units.
(i) Decompose a polynomial $p(x)=4 x^{2}+4 x-8$ as a product of irreducible factors in the ring $\mathbb{Q}[x]$.
(ii) Decompose the same polynomial as a product of irreducible factors in the ring $\mathbb{Z}[x]$.
[Hint: an irreducible element of a polynomial ring is not necessarily the same thing as an irreducible polynomial.]

