Homework assignment #6

Problem 1. Abelian groups of order 72 form how many isomorphism classes? Give an example for each class.

Problem 2 (2 pts). Suppose $G = \{e, a, b, c\}$ is a non-cyclic group of order 4 (where e is the identity element).

(i) Prove that $a^2 = b^2 = c^2 = abc = e$.

(ii) Show that any bijective map $f: G \to \mathbb{Z}_2 \times \mathbb{Z}_2$ such that f(e) = (0, 0) is an isomorphism of groups. [Hint: compare the Cayley tables.]

Problem 3 (3 pts). Suppose G is a non-abelian group of order 6.

(i) Prove that G has an element of order 2 and an element of order 3.

[Hint: Lagrange's theorem alone does not imply this; use Problems 6 and 7 from HW #2.]

(ii) Let a be any element of order 2, b be any element of order 3, and e be the identity element. Show that $G = \{e, b, b^2, a, ab, ab^2\}$.

(iii) Prove that $ba = ab^2$ and $b^2a = ab$.

(iv) Show that there is an isomorphism $f: G \to S_3$ such that f(a) = (12) and f(b) = (123). [Hint: compare the Cayley graphs.]

Problem 4. Let Inn(G) denote the set of all inner automorphisms of a group G. Prove that Inn(G) is a normal subgroup of the group Aut(G) of all automorphisms of G.

Problem 5. Prove that $Inn(G) \cong G/Z(G)$, where Z(G) is the center of the group G.

Problem 6. Prove that $\operatorname{Aut}(\mathbb{Z}_2 \times \mathbb{Z}_2) \cong S_3$. [Hint: consider the action of $\operatorname{Aut}(G)$ on elements of order 2; also, use Problem 2(ii).]

Problem 7. Prove that $\operatorname{Aut}(S_3) \cong S_3$. [Hint: consider the action of $\operatorname{Aut}(G)$ on elements of order 2; also, use Problem 3 or Problem 5.]