MATH 415

Modern Algebra I

Lecture 1:
 Preliminaries from set theory.
 Cardinality of a set.

Set theory

The primary notions of set theory are an element (an object that we can work with), a set (a collection of objects that we can work with), and membership. Namely, given an element x and a set S, we have either $x \in S$ (x is a member of S) or $x \notin S(x$ is not a member of $S)$.

Any set is determined uniquely by its members (axiom of extensionality). Given sets S_{1} and S_{2}, we say that S_{1} is a subset of S_{2} (and write $S_{1} \subset S_{2}$) if every member of S_{1} is also a member of S_{2}. The axiom of extensionality can be rephrased as follows: for any sets S_{1} and S_{2},

$$
S_{1}=S_{2} \Longleftrightarrow S_{1} \subset S_{2} \text { and } S_{2} \subset S_{1} .
$$

Set theory

Set theory can provide the foundation for all of mathematics (though there are other ways as well).

The general idea is that every mathematical object is modeled as a set so that objects of the same kind are the same if and only if the corresponding sets are the same (but the same set can serve as a model for many objects of different kinds).

For example, one way to model nonnegative integers is as follows: 0 is the empty set $\varnothing, 1$ is $\{\varnothing\}, 2$ is $\{\varnothing,\{\varnothing\}\}, 3$ is $\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}$, and so on...

Cartesian product

Definition. The Cartesian product $X \times Y$ of two sets X and Y is the set consisting of all ordered pairs (x, y) such that $x \in X$ and $y \in Y$.
The Cartesian square $X \times X$ is also denoted X^{2}.
If the sets X and Y are finite, then $\#(X \times Y)=(\# X)(\# Y)$, where $\# S$ denote the number of elements in a set S.

Remark. An ordered pair (x, y) can be modeled as a set $S_{x, y}$, where $S_{x, y}=\{x,\{x, y\}\}$ if $x \neq y$ and $S_{x, y}=\{x,\{x\}\}$ if $x=y$.

Relations

Definition. Let X and Y be sets. A relation R from X to Y is given by specifying a subset of the Cartesian product: $S_{R} \subset X \times Y$.
If $(x, y) \in S_{R}$, then we say that x is related to y (in the sense of R or by R) and write $x R y$.

Remarks. - Usually the relation R is identified with the set S_{R}.

- In the case $X=Y$, the relation R is called a relation on X.

Examples. - "is equal to"
$x R y \Longleftrightarrow x=y$
Equivalently, $R=\{(x, x) \mid x \in X \cap Y\}$.

- "is not equal to"
$x R y \Longleftrightarrow x \neq y$
- "is mapped by f to"
$x R y \Longleftrightarrow y=f(x)$, where $f: X \rightarrow Y$ is a function.
Equivalently, R is the graph of the function f.
- "is the image under f of"
(from Y to $X) y R x \Longleftrightarrow y=f(x)$, where $f: X \rightarrow Y$ is a function. If f is invertible, then R is the graph of f^{-1}.
- reversed R^{\prime}
$x R y \Longleftrightarrow y R^{\prime} x$, where R^{\prime} is a relation from Y to X.
- not R^{\prime}
$x R y \Longleftrightarrow$ not $x R^{\prime} y$, where R^{\prime} is a relation from X to Y.
Equivalently, $R=(X \times Y) \backslash R^{\prime}$ (set difference).

Relations on a set

- "is equal to"
$x R y \Longleftrightarrow x=y$
- "is not equal to"
$x R y \Longleftrightarrow x \neq y$
- "is less than"
$X=\mathbb{R}, x R y \Longleftrightarrow x<y$
- "is less than or equal to"
$X=\mathbb{R}, x R y \Longleftrightarrow x \leq y$
- "is contained in"
$X=$ the set of all subsets of some set Y, $x R y \Longleftrightarrow x \subset y$
- "is congruent modulo n to"
$X=\mathbb{Z}, \quad x R y \Longleftrightarrow x \equiv y \bmod n$
- "divides"
$X=\mathbb{N}, x R y \Longleftrightarrow x \mid y$

A relation R on a finite set X can be represented by a directed graph.
Vertices of the graph are elements of X, and we have a directed edge from x to y if and only if $x R y$.

Another way to represent the relation R is the adjacency table.
Rows and columns are labeled by elements of X. We put 1 at the intersection of a row x with a column y if $x R y$. Otherwise we put 0 .

$$
\begin{array}{l|lll}
& a & b & c \\
\hline a & 0 & 1 & 1 \\
b & 0 & 1 & 1 \\
c & 1 & 0 & 0
\end{array}
$$

Properties of relations

Definition. Let R be a relation on a set X. We say that R is

- reflexive if $x R x$ for all $x \in X$,
- symmetric if, for all $x, y \in X, x R y$ implies $y R x$,
- antisymmetric if, for all $x, y \in X, x R y$ and $y R x$ cannot hold simultaneously,
- weakly antisymmetric if, for all $x, y \in X$, $x R y$ and $y R x$ imply that $x=y$,
- transitive if, for all $x, y, z \in X, x R y$ and $y R z$ imply that $x R z$.

Partial ordering

Definition. A relation R on a set X is a partial ordering (or partial order) if R is reflexive, weakly antisymmetric, and transitive:

- $x R x$,
- $x R y$ and $y R x \Longrightarrow x=y$,
- $x R y$ and $y R z \Longrightarrow x R z$.

A relation R on a set X is a strict partial order if R is antisymmetric and transitive:

- $x R y \Longrightarrow$ not $y R x$,
- $x R y$ and $y R z \Longrightarrow x R z$.

Examples. "is less than or equal to", "is contained in", "is a divisor of" are partial orders. "is less than" is a strict order.

Equivalence relation

Definition. A relation R on a set X is an equivalence relation if R is reflexive, symmetric, and transitive:

- $x R x$,
- $x R y \Longrightarrow y R x$,
- $x R y$ and $y R z \Longrightarrow x R z$.

Examples. "is equal to", "is congruent modulo n to" are equivalence relations.

Given an equivalence relation R on X, the equivalence class of an element $x \in X$ relative to R is the set of all elements $y \in X$ such that $y R x$.

Theorem The equivalence classes form a partition of the set X, which means that

- any two equivalence classes either coincide, or else they are disjoint,
- any element of X belongs to some equivalence class.

Functions

A function (or map) $f: X \rightarrow Y$ is an assignment: to each $x \in X$ we assign an element $f(x) \in Y$.

Definition. A function $f: X \rightarrow Y$ is injective (or one-to-one) if $f\left(x^{\prime}\right)=f(x) \Longrightarrow x^{\prime}=x$.
The function f is surjective (or onto) if for each $y \in Y$ there exists at least one $x \in X$ such that $f(x)=y$.
Finally, f is bijective if it is both surjective and injective.
Equivalently, if for each $y \in Y$ there is exactly one $x \in X$ such that $f(x)=y$.

Suppose we have two functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$. We say that g is the inverse function of $f\left(\operatorname{denoted} f^{-1}\right)$ if $y=f(x) \Longleftrightarrow g(y)=x$ for all $x \in X$ and $y \in Y$.

Theorem The inverse function f^{-1} exists if and only if f is bijective.

Definition. The composition of functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ is a function from X to Z, denoted $g \circ f$, that is defined by $(g \circ f)(x)=g(f(x)), x \in X$.

$$
X \xrightarrow{f} Y \xrightarrow{g} Z
$$

Properties of compositions:

- If f and g are one-to-one, then $g \circ f$ is also one-to-one.
- If $g \circ f$ is one-to-one, then f is also one-to-one.
- If f and g are onto, then $g \circ f$ is also onto.
- If $g \circ f$ is onto, then g is also onto.
- If f and g are bijective, then $g \circ f$ is also bijective.
- If f and g are invertible, then $g \circ f$ is also invertible and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
- If id ${ }_{Z}$ denotes the identity function on a set Z, then $f \circ \mathrm{id}_{X}=f=\operatorname{id}_{Y} \circ f$ for any function $f: X \rightarrow Y$.
- For any functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$, we have $g=f^{-1}$ if and only if $g \circ f=\operatorname{id}_{X}$ and $f \circ g=\operatorname{id}_{Y}$.

Cardinality of a set

Definition. Given two sets A and B, we say that A is of the same cardinality as B if there exists a bijective function $f: A \rightarrow B$. Notation: $|A|=|B|$.

Theorem The relation "is of the same cardinality as" is an equivalence relation, i.e., it is reflexive $(|A|=|A|$ for any set $A)$, symmetric $(|A|=|B|$ implies $|B|=|A|)$, and transitive $(|A|=|B|$ and $|B|=|C|$ imply $|A|=|C|$).
Proof: The identity map $\operatorname{id}_{A}: A \rightarrow A$ is bijective. If f is a bijection of A onto B, then the inverse map f^{-1} is a bijection of B onto A. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections then the composition $g \circ f$ is a bijection of A onto C.

Countable and uncountable sets

A nonempty set is finite if it is of the same cardinality as $\{1,2, \ldots, n\}=[1, n] \cap \mathbb{N}$ for some $n \in \mathbb{N}$. Otherwise it is infinite.

An infinite set is called countable (or countably infinite) if it is of the same cardinality as \mathbb{N}.
Otherwise it is uncountable (or uncountably infinite).

An infinite set E is countable if it is possible to arrange all elements of E into a single sequence (an infinite list) $x_{1}, x_{2}, x_{3}, \ldots$ The sequence is referred to as an enumeration of E.

Countable sets

- $2 \mathbb{N}$: even natural numbers.

Bijection $f: \mathbb{N} \rightarrow 2 \mathbb{N}$ is given by $f(n)=2 n$.

- $\mathbb{N} \cup\{0\}$: nonnegative integers.

Bijection $f: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}$ is given by $f(n)=n-1$.

- \mathbb{Z} : integers.

Enumeration of all integers: $0,1,-1,2,-2,3,-3, \ldots$ Equivalently, a bijection $f: \mathbb{N} \rightarrow \mathbb{Z}$ is given by $f(n)=n / 2$ if n is even and $f(n)=(1-n) / 2$ if n is odd.

- $E_{1} \cup E_{2}$, where E_{1} is finite and E_{2} is countable.

First we list all elements of E_{1}. Then we append the list of all elements of E_{2}. If E_{1} and E_{2} are not disjoint, we also need to avoid repetitions in the joint list.

Countable sets

- $E_{1} \cup E_{2}$, where E_{1} and E_{2} are countable. Let $x_{1}, x_{2}, x_{3} \ldots$ be an enumeration of E_{1} and $y_{1}, y_{2}, y_{3}, \ldots$ be an enumeration of E_{2}. Then $x_{1}, y_{1}, x_{2}, y_{2}, \ldots$ enumerates the union (maybe with repetitions).
- Infinite set $E_{1} \cup E_{2} \cup \ldots$, where each E_{n} is finite.

First we list all elements of E_{1}. Then we append the list of all elements of E_{2}. Then we append the list of all elements of E_{3}, and so on... (and do not forget to avoid repetitions).

- $\mathbb{N} \times \mathbb{N}$: pairs of natural numbers
- \mathbb{Q} : rational numbers
- Algebraic numbers (roots of nonzero polynomials with integer coefficients).

