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Modern Algebra I

Lecture 2:
Cardinality of a set (continued).

Binary operations.



Countable and uncountable sets

Definition. Given two sets A and B , we say that A
is of the same cardinality as B if there exists a

bijective function f : A → B . Notation: |A| = |B |.

An infinite set is called countable (or countably
infinite) if it is of the same cardinality as N.

Otherwise it is uncountable (or uncountably
infinite).

An infinite set E is countable if it is possible to

arrange all elements of E into a single sequence
(an infinite list) x1, x2, x3, . . . The sequence is

referred to as an enumeration of E .



Countable sets

• 2N: even natural numbers.

Bijection f : N → 2N is given by f (n) = 2n.

• N ∪ {0}: nonnegative integers.

Bijection f : N → N ∪ {0} is given by f (n) = n − 1.

• Z: integers.

Enumeration of all integers: 0, 1,−1, 2,−2, 3,−3, . . .
Equivalently, a bijection f : N → Z is given by f (n) = n/2 if
n is even and f (n) = (1− n)/2 if n is odd.

• E1 ∪ E2, where E1 is finite and E2 is countable.

First we list all elements of E1. Then we append the list of all
elements of E2. If E1 and E2 are not disjoint, we also need to
avoid repetitions in the joint list.



Countable sets

• E1 ∪ E2, where E1 and E2 are countable.

Let x1, x2, x3 . . . be an enumeration of E1 and y1, y2, y3, . . .
be an enumeration of E2. Then x1, y1, x2, y2, . . . enumerates
the union (maybe with repetitions).

• Infinite set E1∪E2∪ . . . , where each En is finite.

First we list all elements of E1. Then we append the list of all
elements of E2. Then we append the list of all elements of E3,
and so on... (and do not forget to avoid repetitions).

• N× N: pairs of natural numbers

• Q: rational numbers

• Algebraic numbers (roots of nonzero
polynomials with integer coefficients).



Enumeration of N× N



Theorem (Cantor) The set R is uncountable.

Proof: It is enough to prove that the interval (0, 1) is
uncountable. Assume the contrary. Then all numbers from
(0, 1) can be arranged into an infinite list x1, x2, x3, . . . Any
number x ∈ (0, 1) admits a decimal expansion of the form
0.d1d2d3 . . . , where each di ∈ {0, 1, . . . , 9}. In particular,

x1 = 0.d11d12d13d14d15 . . .
x2 = 0.d21d22d23d24d25 . . .
x3 = 0.d31d32d33d34d35 . . .
. . . . . . . . . . . . . . . . . . . . . . . .

Now for any n ∈ N choose a decimal digit d̃n such that
d̃n 6= dnn and d̃n /∈ {0, 9}. Then 0.d̃1d̃2d̃3 . . . is the decimal
expansion of some number x̃ ∈ (0, 1). By construction, it is
different from all expansions in the list. Although some real
numbers admit two decimal expansions (e.g., 0.50000 . . . and

0.49999 . . . ), the condition d̃n /∈ {0, 9} ensures that x̃ is not
such a number. Thus x̃ is not listed, a contradiction.



Uncountable sets

• Any interval (a, b) is of the same cardinality as

(0, 1).

Bijection f : (0, 1) → (a, b) is given by f (x) = (b − a)x + a.

• All intervals of the form (a, b) have the same
cardinality.

Follows by transitivity since they are all of the same cardinality
as (0, 1).

• All intervals of the form (a,∞) or (−∞, a) are
of the same cardinality as (0,∞).

Bijection f : (0,∞) → (a,∞) is given by f (x) = x + a.
Bijection f : (0,∞) → (−∞, a) is given by f (x) = −x + a.



Uncountable sets

• (0, 1) is of the same cardinality as (1,∞).

Bijection f : (0, 1) → (1,∞) is given by f (x) = x−1.

• (0,∞) is of the same cardinality as R.

Bijection f : R → (0,∞) is given by f (x) = ex .

• [0, 1] is of the same cardinality as (0, 1).

Let x1, x2, x3, . . . be a sequence of distinct points in (0, 1),
say, xn = (n + 1)−1 for all n ∈ N. Then a bijection
f : [0, 1] → (0, 1) is defined as follows: f (0) = x1, f (1) = x2,
f (xn) = xn+2 for all n ∈ N, and f (x) = x otherwise.



How to compare cardinalities?
Definition. Given two sets A and B , we say that the
cardinality of A is less than or equal to the cardinality of B
(and write |A| � |B |) if the set A is of the same cardinality as
some subset of B . An equivalent condition is that there exists
an injective function f : A → B .

We say that the cardinality of A is less than the cardinality of
B (and write |A| ≺ |B |) if |A| � |B | and |A| 6= |B |.

Proposition (i) If |A| � |B | and |B | � |C |, then |A| � |C |.
(ii) If |A| ≺ |B | and |B | ≺ |C |, then |A| ≺ |C |.

Theorem (Schröder-Bernstein) If |A| � |B | and
|B | � |A|, then |A| = |B |.

Hence � (or ≺) is an ordering of cardinalities. Moreover, this
ordering is total, i.e., any two cardinalities are comparable.

Theorem For any two sets A and B , we have either
|A| ≺ |B | or |B | ≺ |A| or |A| = |B |.



Binary operations

Definition. A binary operation ∗ on a nonempty
set S is simply a function ∗ : S × S → S .

The usual notation for the element ∗(x , y) is x ∗ y .

The pair (S , ∗) is called a binary algebraic

structure.

“Structures are the weapons of the mathematician.”

Nicholas Bourbaki



Examples: arithmetic operations

Addition + of:

natural numbers, integers, rationals, real numbers, complex
numbers, vectors, matrices of fixed dimensions, real-valued
functions with fixed domain.

Subtraction − of:

all above examples with addition except for natural numbers.

Multiplication × of:

natural numbers, integers, rationals, real numbers, complex
numbers, square matrices of fixed dimensions, real-valued
functions with fixed domain.

Division / of:

positive rationals, nonzero rationals, positive real numbers,
nonzero real numbers, nonzero complex numbers, nonzero
rational functions.



Examples: addition modulo n

Given a natural number n, let
Zn = {0, 1, 2, . . . , n− 1}.

A binary operation +n (addition modulo n) on Zn

is defined for any x , y ∈ Zn by

x +n y =

{

x + y if x + y < n,
x + y − n if x + y ≥ n.

Now let n be a positive real number and
Rn = [0, n). The binary operation +n on Rn is

defined by the same formula as above.

Remark. The binary structure (R2π,+2π) is an
abstract model for rotations of a circle.



Examples: composition of functions

Let F (X ,X ) denote the set of all functions

f : X → X . Given two functions f , g ∈ F (X ,X ),
the composition f ◦ g is another function in

F (X ,X ) defined by (f ◦ g)(x) = f (g(x)), x ∈ X .

Then ◦ is a binary operation on the following
subsets of F (X ,X ):

• all functions,

• all invertible functions,
• all injective functions,

• all surjective functions.



Examples: set theory

P(X ) = the set of all subsets of some set X .

Binary operations on P(X ):

• union A ∪ B ,
• intersection A ∩ B ,
• set difference A \ B ,

• symmetric difference A△B = (A \ B) ∪ (B \ A).



Examples: logic

Binary logic L = {“true”, “false”}.

Binary operations on L:

• logical AND,
• logical OR,

• XOR (eXclusive OR),
• =⇒,

• ⇐=,
• ⇐⇒.

Overall, there are 22·2 = 16 distinct binary

operations on any set consisting of two elements.



Counterexamples

• Reciprocal of a positive number.
S = R+, ∗(x) = x−1.

This operation is unary, not binary.

• Mean arithmetic value of three numbers.

S = R, ∗(x , y , z) =
x + y + z

3
.

This operation is ternary, not binary.

• Division of real numbers.

S = R, x ∗ y = x/y .

The operation is only partially defined as one cannot

divide by 0.



Counterexamples

• Division of natural numbers.

S = N, x ∗ y = x/y .

The operation is not well defined as x ∗ y is not

always an integer.

• Solution of a quadratic equation.

S = C, (x ∗ y)2 + x(x ∗ y) + y = 0.

The operation is not defined uniquely as the
equation can have two solutions. In other words,

this is not a function.



Restriction

Suppose (S , ∗) is a binary structure. If S0 is a
nonempty subset of S then we can restrict ∗, as

a function, from S × S to S0 × S0.

If the restricted function is a binary operation on S0
then we call it the restriction of the operation to

S0 and use the same notation ∗.

The restricted function is a binary operation on S0
if and only if the subset S0 is closed under the

operation ∗ which means that x , y ∈ S0 implies
x ∗ y ∈ S0. Otherwise the restricted operation is

not well defined.



Useful properties of binary operations

Suppose (S , ∗) is a binary structure.

• Commutativity:
g ∗ h = h ∗ g for all g , h ∈ S .

• Associativity:
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ S .

• Existence of the identity element:
there exists an element e ∈ S such that e ∗ g = g ∗ e = g

for all g ∈ S .

• Existence of the inverse element:
for any g ∈ S there exists an element h ∈ S such that
g ∗ h = h ∗ g = e (where e is the identity element).

• Cancellation:
g ∗ h1 = g ∗ h2 implies h1 = h2 and h1 ∗ g = h2 ∗ g implies
h1 = h2 for all g , h1, h2 ∈ S .



Cayley table

A binary operation on a finite set can be given by a Cayley
table (i.e., “multiplication” table):

∗ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

The Cayley table is convenient to check commutativity of the
operation (the table should be symmetric relative to the
diagonal), cancellation properties (left cancellation holds if
each row contains all elements, right cancellation holds if each
column contains all elements), existence of the identity
element, and existence of the inverse.

However this table is not convenient to check associativity of
the operation.



Problem. The following is a partially completed Cayley table
for a certain commutative operation with cancellation:

∗ a b c d

a b c

b c

c a

d d

Complete the table.

Solution:

∗ a b c d

a b a d c

b a b c d

c d c b a

d c d a b


