Lecture 3:

MATH 415

Modern Algebra I

Groups.

Isomorphism of binary structures.

Binary operations

Definition. A **binary operation** * on a nonempty set S is simply a function $*: S \times S \rightarrow S$.

The usual notation for the element *(x, y) is x * y.

The pair (S, *) is called a **binary algebraic** structure.

"Structures are the weapons of the mathematician."

Nicholas Bourbaki

Isomorphism of binary structures

Definition. A function $f: S_1 \to S_2$ is called an **isomorphism** of binary structures $(S_1, *)$ and (S_2, \bullet) if it is bijective and $f(x * y) = f(x) \bullet f(y)$ for all $x, y \in S_1$.

Two binary structures $(S_1, *)$ and (S_2, \bullet) are called **isomorphic** if there is an isomorphism $f: S_1 \to S_2$.

The word "isomorphism" applies when two complex structures can be mapped onto each other, in such a way that to each part of one structure there is a corresponding part in the other structure, where "corresponding" means that the two parts play similar roles in their respective structures.

Douglas Hofstadter

Alternative terminology

General maps

General maps	
(one-to-one injective
(onto surjective
(one-to-one and onto bijective
	Maps preserving a structure
ä	any maphomomorphism
(one-to-onemonomorphism
(onto epimorphism
(one-to-one and onto isomorphism
	Self-maps preserving a structure
ä	any map endomorphism

one-to-one and onto automorphism

Isomorphism of binary structures

Theorem Isomorphy is an equivalence relation on binary structures.

Proof. We need to check three conditions.

Reflexivity:

For any binary operation * on a set S, the identity map $\mathrm{id}_S:S\to S$ is an automorphism of the binary structure (S,*).

Symmetry:

Suppose $(S_1,*)$ and (S_2, \bullet) are binary structures and $f: S_1 \to S_2$ is an isomorphism. Then the inverse map $f^{-1}: S_2 \to S_1$ is also an isomorphism.

Transitivity:

Suppose $(S_1,*)$, (S_2, \bullet) and (S_3, \star) are binary structures. If $f: S_1 \to S_2$ and $h: S_2 \to S_3$ are isomorphisms then the composition $h \circ f: S_1 \to S_3$ is also an isomorphism.

Examples of isomorphic binary structures

• $(\mathbb{Z}, +)$ and $(2\mathbb{Z}, +)$.

An isomorphism $\phi: \mathbb{Z} \to 2\mathbb{Z}$ is given by $\phi(x) = 2x$.

• $(\mathbb{R},+)$ and (\mathbb{R}^+,\cdot) .

An isomorphism $\phi : \mathbb{R} \to \mathbb{R}^+$ is given by $\phi(x) = e^x$. Indeed, $e^{x+y} = e^x \cdot e^y$ for all $x, y \in \mathbb{R}$.

• Union and intersection of sets.

 $\mathcal{P}(X)$ is a set of all subsets of some set X. An isomorphism between binary structures (\mathcal{P}, \cup) and (\mathcal{P}, \cap) is given by $\phi(A) = X \setminus A$. Indeed, $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$ for all $A, B \subseteq X$.

Non-isomorphic binary structures

A property of a binary operation is called **structural** if it is preserved under isomorphisms. A usual way to prove that two binary structures are not isomorphic is to identify a structural property that is featured by one of them but not by the other.

Structural properties are to be worded properly. For example, the following property of (\mathbb{R},\cdot) is not structural:

$$x \cdot 0 = 0$$
 for all $x \in \mathbb{R}$.

However it can be reformulated as a structural property: there exists $z \in \mathbb{R}$ such that $x \cdot z = z$ for all $x \in \mathbb{R}$.

This structural property shows, for example, that the binary structure (\mathbb{R},\cdot) is not isomorphic to (\mathbb{R}^+,\cdot) or to $(\mathbb{R},+)$.

The simplest structural characteristic of a binary structure is the cardinality of the underlying set.

Useful (structural) properties of binary operations

Suppose (S, *) is a binary structure.

- Commutativity:
- g * h = h * g for all $g, h \in S$.
 - Associativity:

$$(g*h)*k = g*(h*k)$$
 for all $g,h,k \in S$.

• Existence of the identity element:

there exists an element $e \in S$ such that e * g = g * e = g for all $g \in S$.

• Existence of the inverse element:

for any $g \in S$ there exists an element $h \in S$ such that g * h = h * g = e (where e is the identity element).

Cancellation:

 $g*h_1=g*h_2$ implies $h_1=h_2$ and $h_1*g=h_2*g$ implies $h_1=h_2$ for all $g,h_1,h_2\in S$.

Groups

Definition. A **group** is a binary structure (G, *) that satisfies the following axioms:

(G0: closure)

for all elements g and h of G, g*h is an element of G;

(G1: associativity)

$$(g*h)*k = g*(h*k)$$
 for all $g,h,k \in G$;

(G2: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of G, such that e * g = g * e = g for all $g \in G$;

(G3: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of g, such that g * h = h * g = e.

The group (G,*) is said to be **commutative** (or **abelian**) if it satisfies an additional axiom:

(G4: commutativity) g * h = h * g for all $g, h \in G$.

Basic examples. ullet Real numbers $\mathbb R$ with addition.

(G0)
$$x, y \in \mathbb{R} \implies x + y \in \mathbb{R}$$

(G1) $(x + y) + z = x + (y + z)$
(G2) the identity element is 0 as $x + 0 = 0 + x = x$
(G3) the inverse of x is $-x$ as $x + (-x) = (-x) + x = 0$

• Nonzero real numbers $\mathbb{R} \setminus \{0\}$ with multiplication.

(G4) x + y = y + x

(G0)
$$x \neq 0$$
 and $y \neq 0 \implies xy \neq 0$
(G1) $(xy)z = x(yz)$
(G2) the identity element is 1 as $x1 = 1x = x$
(G3) the inverse of x is x^{-1} as $xx^{-1} = x^{-1}x = 1$
(G4) $xy = yx$

The two basic examples give rise to two kinds of notation for a general group (G,*).

Multiplicative notation: We think of the group operation * as some kind of multiplication, namely,

- a * b is denoted ab,
- the identity element is denoted 1,
- the inverse of g is denoted g^{-1} .

Additive notation: We think of the group operation * as some kind of addition, namely,

- a * b is denoted a + b,
 - the identity element is denoted 0,
 - the inverse of g is denoted -g.

Remarks. Default notation is multiplicative (but the identity element may be denoted e or id or 1_G). The additive notation may be used only for commutative groups.

Example: addition modulo *n*

Given a natural number n, let

$$\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}.$$

A binary operation $+_n$ (addition modulo n) on \mathbb{Z}_n is defined for any $x,y\in\mathbb{Z}_n$ by

$$x +_n y = \begin{cases} x + y & \text{if } x + y < n, \\ x + y - n & \text{if } x + y \ge n. \end{cases}$$

Now let n be a positive real number and $\mathbb{R}_n = [0, n)$. The binary operation $+_n$ on \mathbb{R}_n is defined by the same formula as above.

Theorem Each $(\mathbb{Z}_n, +_n)$ and each $(\mathbb{R}_n, +_n)$ is a group. All groups $(\mathbb{R}_n, +_n)$ are isomorphic.

Example: invertible functions

- Symmetric group S(X): all bijective functions $\pi: X \to X$ with composition (= multiplication).
- (G0) π and σ are bijective functions from the set X to itself \implies so is $\pi\sigma$
- (G1) $(\pi\sigma)\tau$ and $\pi(\sigma\tau)$ applied to $x\in X$ both yield $\pi(\sigma(\tau(x)))$
- (G2) the identity element is the identity function id_X as $\pi \operatorname{id}_X = \operatorname{id}_X \pi = \pi$
- (G3) the inverse function π^{-1} satisfies $\pi\pi^{-1} = \pi^{-1}\pi = \mathrm{id}_X$ (conversely, if $\pi\sigma = \sigma\pi = \mathrm{id}_X$, then $\sigma = \pi^{-1}$)
- (G4) fails if the set has more than 2 elements

Example: set theory

• All subsets of a set X with the operation of symmetric difference: $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

(G0)
$$A, B \subseteq X \implies A \triangle B \subseteq X$$
.

- (G1) $(A\triangle B)\triangle C = A\triangle (B\triangle C)$ consists of those elements of X that belong to an odd number of sets A,B,C (either to just one of them or to all three)
- (G2) the identity element is the empty set \emptyset since

$$A \triangle \emptyset = \emptyset \triangle A = A$$
 for any set A

(G3) the inverse of a set $A \subseteq X$ is A itself: $A \triangle A = \emptyset$

$$(G4) A\triangle B = B\triangle A = (A \cup B) \setminus (A \cap B)$$

Example: logic

• Binary logic $\mathcal{L} = \{\text{"true"}, \text{"false"}\}\$ with the operation XOR (eXclusive OR): "x XOR y" means "either x or y (but not both)".

```
(G0) "true XOR false" = "false XOR true" = "true", "true XOR true" = "false XOR false" = "false" (G1) "(x XOR y) XOR z" = "x XOR (y XOR z)" (G2) the identity element is "false" (G3) the inverse of x \in \mathcal{L} is x itself (G4) "x XOR y" = "y XOR x"
```

More examples

• Any vector space *V* with addition.

Those axioms of the vector space that involve only addition are exactly axioms of the commutative group.

• Trivial group (G,*), where $G = \{e\}$ and e*e = e.

Verification of all axioms is straightforward.

• Positive real numbers with the operation x * y = 2xy.

(G0)
$$x, y > 0 \implies 2xy > 0$$

(G1) $(x * y) * z = x * (y * z) = 4xyz$
(G2) the identity element is $\frac{1}{2}$ as $x * e = x$ means $2ex = x$
(G3) the inverse of x is $\frac{1}{4x}$ as $x * y = \frac{1}{2}$ means $4xy = 1$
(G4) $x * y = y * x = 2xy$

Counterexamples

- ullet Real numbers ${\mathbb R}$ with multiplication.
- 0 has no inverse.
 - Positive integers with addition.

No identity element.

- Nonnegative integers with addition.
- No inverse element for positive numbers.
- Irrational numbers with addition.

The set is not closed under the operation.

• Integers with subtraction.

The operation is not associative: (a - b) - c = a - (b - c) only if c = 0.

• All subsets of a set X with the operation $A*B=A\cup B$. The operation is associative and commutative, the empty set is the identity element. However there is no inverse for a nonempty set.