MATH 415
Modern Algebra I

Lecture 6:

Cyclic groups (continued).
Cayley graphs.
Permutations.

Cyclic groups

A cyclic group is a subgroup generated by a single element.
Cyclic group: $\langle g\rangle=\left\{g^{n} \mid n \in \mathbb{Z}\right\}$ (in multiplicative notation) or $\langle g\rangle=\{n g \mid n \in \mathbb{Z}\}$ (in additive notation).
Any cyclic group is abelian since $g^{n} g^{m}=g^{n+m}=g^{m} g^{n}$ for all $m, n \in \mathbb{Z}$.

If g has finite order n, then the cyclic group $\langle g\rangle$ consists of n elements $g, g^{2}, \ldots, g^{n-1}, g^{n}=e$.
If g is of infinite order, then $\langle g\rangle$ is infinite.
Examples of cyclic groups: $\mathbb{Z}, 3 \mathbb{Z}, \mathbb{Z}_{5}, \mathbb{Z}_{8}$.
Examples of noncyclic groups: any uncountable group, any non-abelian group, \mathbb{Q} with addition, $\mathbb{Q} \backslash\{0\}$ with multiplication.

Subgroups of a cyclic group

Theorem Every subgroup of a cyclic group is

 cyclic as well.Proof: Suppose that G is a cyclic group and H is a subgroup of G. Let g be the generator of $G, G=\left\{g^{n} \mid n \in \mathbb{Z}\right\}$. Denote by k the smallest positive integer such that $g^{k} \in H$ (if there is no such integer then $H=\{e\}$, which is a cyclic group). We are going to show that $H=\left\langle g^{k}\right\rangle$.
Since $g^{k} \in H$, it follows that $\left\langle g^{k}\right\rangle \subset H$. Let us show that $H \subset\left\langle g^{k}\right\rangle$. Take any $h \in H$. Then $h=g^{n}$ for some $n \in \mathbb{Z}$. We have $n=k q+r$, where q is the quotient and r is the remainder after division of n by $k(0 \leq r<k)$. It follows that $g^{r}=g^{n-k q}=g^{n} g^{-k q}=h\left(g^{k}\right)^{-q} \in H$. By the choice of k, we obtain that $r=0$. Thus $h=g^{n}=g^{k q}=\left(g^{k}\right)^{q} \in\left\langle g^{k}\right\rangle$.

Examples

- Integers \mathbb{Z} with addition.

The group is cyclic, $\mathbb{Z}=\langle 1\rangle=\langle-1\rangle$. The proper cyclic subgroups of \mathbb{Z} are: the trivial subgroup $\{0\}=\langle 0\rangle$ and, for any integer $m \geq 2$, the group $m \mathbb{Z}=\langle m\rangle=\langle-m\rangle$. These are all subgroups of \mathbb{Z}.

- \mathbb{Z}_{5} with addition modulo 5 .

The group is cyclic, $\mathbb{Z}_{5}=\langle 1\rangle=\langle 2\rangle=\langle 3\rangle=\langle 4\rangle$. The only proper subgroup is the trivial subgroup $\{0\}=\langle 0\rangle$.

- \mathbb{Z}_{6} with addition modulo 6 .

The group is cyclic, $\mathbb{Z}_{6}=\langle 1\rangle=\langle 5\rangle$. Proper subgroups are $\{0\}=\langle 0\rangle, \quad\{0,3\}=\langle 3\rangle$ and $\{0,2,4\}=\langle 2\rangle=\langle 4\rangle$.

Greatest common divisor

Given two nonzero integers a and b, the greatest common divisor of a and b is the largest natural number that divides both a and b.

Notation: $\operatorname{gcd}(a, b)$.
Example. $a=12, b=18$.
Natural divisors of 12 are $1,2,3,4,6$, and 12 .
Natural divisors of 18 are 1, 2, 3, 6, 9, and 18 .
Common divisors are $1,2,3$, and 6 .
Thus $\operatorname{gcd}(12,18)=6$.
Notice that $\operatorname{gcd}(12,18)$ is divisible by any other common divisor of 12 and 18 .

Definition. Given nonzero integers $a_{1}, a_{2}, \ldots, a_{k}$, the greatest common divisor $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is the largest positive integer that divides $a_{1}, a_{2}, \ldots, a_{k}$.

Theorem (i) $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is the smallest positive integer represented as $n_{1} a_{1}+n_{2} a_{2}+\cdots+n_{k} a_{k}$, where each $n_{i} \in \mathbb{Z}$ (that is, as an integral linear combination of $\left.a_{1}, a_{2}, \ldots, a_{k}\right)$.
(ii) $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is divisible by any other common divisor of $a_{1}, a_{2}, \ldots, a_{k}$.
Proof. Consider an additive subgroup H of \mathbb{Z} generated by $a_{1}, a_{2}, \ldots, a_{k}$. The subgroup H consists exactly of integral linear combinations of $a_{1}, a_{2}, \ldots, a_{k}$. Note that H is not a trivial subgroup. By the above, $H=m \mathbb{Z}$ for some integer $m \geq 1$. Clearly, m is the smallest positive element of H and a common divisor of $a_{1}, a_{2}, \ldots, a_{k}$. Since $m \in H$, it is an integral linear combination of $a_{1}, a_{2}, \ldots, a_{k}$ and hence is divisible by any other common divisor.

Cayley graph

A finitely generated group G can be visualized via the Cayley graph. Suppose a, b, \ldots, c is a finite list of generators for G. The Cayley graph is a directed graph (or digraph) with labeled edges where vertices are elements of G and edges show multiplication by generators. Namely, every edge is of the form $g \xrightarrow{s} g s$. Alternatively, one can assign colors to generators and think of the Cayley graph as a graph with colored edges.
The Cayley graph can be used for computations in G. For example, let $h=a^{2} b^{-1} c a^{-1}$. To compute $g h$, we need to find a path of the form (note the directions of edges)

$$
g \xrightarrow{a} g_{1} \xrightarrow{a} g_{2} \stackrel{b}{\longleftrightarrow} g_{3} \xrightarrow{c} g_{4} \stackrel{a}{\longleftarrow} g_{5} .
$$

Such a path exists and is unique. Then $g h=g_{5}$.
Also, the Cayley graph can be used to find relations between generators, which are equalities of the form $g_{1} g_{2} \ldots g_{k}=1_{G}$, where each g_{i} is a generator or the inverse of a generator. Any relation corresponds to a closed path in the graph.

Examples of Cayley graphs

Group: \mathbb{Z}_{5}.
Generating set: $\{1\}$.

Group: \mathbb{Z}. Generating set: $\{1\}$.

Group: \mathbb{Z}_{6}.
Generating set: $\{2,3\}$.

Klein four-group

The Klein four-group $V=\{a, b, c, d\}$ is a group with the following Cayley table and Cayley graph:

$*$	a	b	c	d
a	a	b	c	d
b	b	a	d	c
c	c	d	a	b
d	d	c	b	a

The group is abelian but not cyclic. The Cayley graph is relative to the generating set $\{b, c, d\}$ (a is the identity element). Since every generator is its own inverse, each directed edge $g \xrightarrow{s} g s$ is accompanied by another edge $g{ }^{s}$ gs. This allows to consider the Cayley graph as a graph with undirected edges.

Permutations

Let X be a nonempty set. A permutation of X is a bijective function $f: X \rightarrow X$.

Given two permutations π and σ of X, the composition $\pi \sigma$, defined by $\pi \sigma(x)=\pi(\sigma(x))$, is called the product of these permutations. In general, $\pi \sigma \neq \sigma \pi$, i.e., multiplication of permutations is not commutative. However it is associative: $\pi(\sigma \tau)=(\pi \sigma) \tau$.

All permutations of a set X form a group called the symmetric group on X. Notation: $S_{X}, \Sigma_{X}, \operatorname{Sym}(X)$.
All permutations of $\{1,2, \ldots, n\}$ form a group called the symmetric group on n symbols and denoted S_{n} or $S(n)$.

Permutations of a finite set

The word "permutation" usually refers to transformations of finite sets.
Permutations are traditionally denoted by Greek letters ($\pi, \sigma, \tau, \rho, \ldots$).
Two-row notation. $\pi=\left(\begin{array}{cccc}a & b & c & \ldots \\ \pi(a) & \pi(b) & \pi(c) & \ldots\end{array}\right)$, where a, b, c, \ldots is a list of all elements in the domain of π. Rearrangement of columns does not change the permutation.

Example. The symmetric group S_{3} consists of 6 permutations:
$\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)$.

Theorem The symmetric group S_{n} has $n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$ elements.

Traditional argument: The number of elements in S_{n} is the number of different rearrangements $x_{1}, x_{2}, \ldots, x_{n}$ of the list $1,2, \ldots, n$. There are n possibilities to choose x_{1}. For any choice of x_{1}, there are $n-1$ possibilities to choose x_{2}. And so on...
Alternative argument: Any rearrangement of the list $1,2, \ldots, n$ can be obtained as follows. We take a rearrangement of $1,2, \ldots, n-1$ and then insert n into it. By the inductive assumption, there are ($n-1$)! ways to choose a rearrangement of $1,2, \ldots, n-1$. For any choice, there are n ways to insert n.

Product of permutations

Given two permutations π and σ, the composition $\pi \sigma$ is called the product of these permutations. Do not forget that the composition is evaluated from right to left: $(\pi \sigma)(x)=\pi(\sigma(x))$.
To find $\pi \sigma$, we write π underneath σ (in two-row notation), then reorder the columns so that the second row of σ matches the first row of π, then erase the matching rows.
Example. $\pi=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1\end{array}\right), \sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4\end{array}\right)$.

$$
\begin{aligned}
& \sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 5 & 4
\end{array}\right) \quad \Longrightarrow \pi \sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 3 & 2 & 1 & 5
\end{array}\right) \\
& \pi=\left(\begin{array}{lllll}
3 & 1 & 1 & 5 & 4 \\
4 & 3 & 2 & 1 & 5
\end{array}\right) \quad \Longrightarrow \quad
\end{aligned}
$$

To find π^{-1}, we simply exchange the upper and lower rows:

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1
\end{array}\right)^{-1}=\left(\begin{array}{lllll}
2 & 3 & 4 & 5 & 1 \\
1 & 2 & 3 & 4 & 5
\end{array}\right)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 1 & 2 & 3 & 4
\end{array}\right) .
$$

Cycles

A permutation π of a set X is called a cycle (or cyclic) of length r if there exist r distinct elements $x_{1}, x_{2}, \ldots, x_{r} \in X$ such that

$$
\pi\left(x_{1}\right)=x_{2}, \pi\left(x_{2}\right)=x_{3}, \ldots, \pi\left(x_{r-1}\right)=x_{r}, \pi\left(x_{r}\right)=x_{1},
$$

and $\pi(x)=x$ for any other $x \in X$.
Notation. $\pi=\left(\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{r}\end{array}\right)$.
The identity function is (the only) cycle of length 1. Any cycle of length 2 is called a transposition.
The inverse of a cycle is also a cycle of the same length. Indeed, if $\pi=\left(\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{r}\end{array}\right)$, then $\pi^{-1}=\left(\begin{array}{llll}x_{r} & x_{r-1} & \ldots & x_{2}\end{array} x_{1}\right)$.
Example. Any permutation of $\{1,2,3\}$ is a cycle.

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)=\operatorname{id},\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)=\left(\begin{array}{ll}
2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right), \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 3
\end{array}\right) .
\end{aligned}
$$

