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Lecture 6:
Cyclic groups (continued).
Cayley graphs.
Permutations.



Cyclic groups

A cyclic group is a subgroup generated by a single element.
Cyclic group: (g) = {g" | n € Z} (in multiplicative notation)
or (g) ={ng | ne€Z} (in additive notation).

Any cyclic group is abelian since g"g™ = g"t™ = gMg" for
all mneZ.

If g has finite order n, then the cyclic group (g) consists of n
elements g,g2, ..., g" L g"=e.

If g is of infinite order, then (g) is infinite.

Examples of cyclic groups: 7., 37, Zs, Zg.

Examples of noncyclic groups: any uncountable group,
any non-abelian group, Q with addition, Q\ {0} with
multiplication.



Subgroups of a cyclic group

Theorem Every subgroup of a cyclic group is
cyclic as well.

Proof: Suppose that G is a cyclic group and H is a subgroup
of G. Let g be the generator of G, G = {g" | n € Z}.
Denote by k the smallest positive integer such that gk ¢ H
(if there is no such integer then H = {e}, which is a cyclic
group). We are going to show that H = (g*).

Since gk € H, it follows that (g*) C H. Let us show that

H C (gX). Take any h€ H. Then h= g" for some n € Z.
We have n = kq + r, where g is the quotient and r is the
remainder after division of n by k (0 < r < k). It follows that
g =g" " =g"gk = h(gk)~9 € H. By the choice of k,
we obtain that r =0. Thus h=g" = gki = (g")7 € (g¥).



Examples

e Integers Z with addition.

The group is cyclic, Z = (1) = (—1). The proper cyclic
subgroups of Z are: the trivial subgroup {0} = (0) and, for
any integer m > 2, the group mZ = (m) = (—m). These
are all subgroups of Z.

e /s with addition modulo 5.
The group is cyclic, Zs = (1) = (2) = (3) = (4). The only
proper subgroup is the trivial subgroup {0} = (0).

e 7 with addition modulo 6.
The group is cyclic, Zg = (1) = (5). Proper subgroups are

{0} = (0), {0,3} = (3) and {0,2,4} = (2) = (4).



Greatest common divisor

Given two nonzero integers a and b, the greatest
common divisor of a and b is the largest natural
number that divides both a and b.

Notation: gcd(a, b).

Example. a =12, b= 18.

Natural divisors of 12 are 1,2,3,4,6, and 12.
Natural divisors of 18 are 1,2,3,6,9, and 18.
Common divisors are 1,23, and 6.

Thus ged(12,18) = 6.

Notice that gcd(12,18) is divisible by any other
common divisor of 12 and 18.



Definition. Given nonzero integers ai, ao, ..., ax, the

greatest common divisor gcd(ay, a,, ..., ax) is the largest
positive integer that divides aj, ap, ..., ax.
Theorem (i) gcd(ay, az, ..., ax) is the smallest positive

integer represented as nia; + noa, + - - - + nax, where each
n; € Z (that is, as an integral linear combination of
di,d, ..., ak).

(i) gcd(ay, az, ..., ax) is divisible by any other common
divisor of aj, ay, ..., ax.

Proof. Consider an additive subgroup H of Z generated by
ai, as,...,ax. Ihesubgroup H consists exactly of integral
linear combinations of ai, as,...,a,. Note that H is not a
trivial subgroup. By the above, H = mZ for some integer
m > 1. Clearly, m is the smallest positive element of H and
a common divisor of aj, a»,...,ax. Since m € H, itisan
integral linear combination of ap, ap,...,ax and hence is
divisible by any other common divisor.



Cayley graph

A finitely generated group G can be visualized via the Cayley
graph. Suppose a, b, ..., c is a finite list of generators for
G. The Cayley graph is a directed graph (or digraph) with
labeled edges where vertices are elements of G and edges show
multiplication by generators. Namely, every edge is of the form
g — gs. Alternatively, one can assign colors to generators
and think of the Cayley graph as a graph with colored edges.

The Cayley graph can be used for computations in G. For
example, let h = a’b *ca™!. To compute gh, we need to find

a path of the form (note the directions of edges)
a a b c a
8 —81 8 < 8 — 8 < 8.
Such a path exists and is unique. Then gh = gs.

Also, the Cayley graph can be used to find relations between
generators, which are equalities of the form g1g> ... gk = 1g,
where each g; is a generator or the inverse of a generator.
Any relation corresponds to a closed path in the graph.



Examples of Cayley graphs

o
Group: Zs. o/ \o
Generating set: {1}. \ /

o—>0

e 0 D0 —— SO0 ——> O ——> ...

Group: Z. Generating set: {1}.

/(‘ \) ( > < > g;(:l:?;tig set: {2,3}.




Klein four-group

The Klein four-group V = {a, b, c,d} is a group with the
following Cayley table and Cayley graph:

Q0O T ¥
Q0O T L|L
0O QU T|T
T-Lw Q0|0
L T 0O QlQ

b

The group is abelian but not cyclic. The Cayley graph is
relative to the generating set {b, c,d} (ais the identity

element). Since every generator is its own inverse, each

directed edge g — gs is accompanied by another edge
g <— gs. This allows to consider the Cayley graph as a
graph with undirected edges.



Permutations

Let X be a nonempty set. A permutation of X is a bijective
function f : X — X.

Given two permutations 7 and ¢ of X, the composition 7o,
defined by 7o (x) = m(o(x)), is called the product of these
permutations. In general, mo # ow, i.e., multiplication of
permutations is not commutative. However it is associative:
m(oT) = (wo)T.

All permutations of a set X form a group called the
symmetric group on X. Notation: Sx, Lx, Sym(X).

All permutations of {1,2,...,n} form a group called the
symmetric group on n symbols and denoted S, or S(n).



Permutations of a finite set

The word “permutation” usually refers to
transformations of finite sets.

Permutations are traditionally denoted by Greek
letters (m, o, 7, p,...).

. a b c ...
Two-row notation. m = ,
m(a) w(b) =(c) ...
where a, b, c,... is a list of all elements in the

domain of . Rearrangement of columns does not
change the permutation.



Example. The symmetric group S; consists of 6 permutations:
2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
2 3)'\1 3 2/)'\2 1 3/)'\2 3 1)'\312/'\3 2 1)

Theorem The symmetric group S, has n! =1-2-3-...-n
elements.

Traditional argument: The number of elements in S, is the
number of different rearrangements xi, x», ..., x, of the list
1,2,...,n. There are n possibilities to choose x;. For any
choice of xq, there are n—1 possibilities to choose x,. And so
on...

Alternative argument: Any rearrangement of the list
1,2,...,n can be obtained as follows. We take a
rearrangement of 1.2 ..., n—1 and then insert n into it. By
the inductive assumption, there are (n—1)! ways to choose a
rearrangement of 1,2,...,n—1. For any choice, there are n
ways to insert n.



Product of permutations

Given two permutations 7 and o, the composition 7o is called
the product of these permutations. Do not forget that the
composition is evaluated from right to left: (wo)(x) = 7(o(x)).

To find 7o, we write 7 underneath o (in two-row notation),
then reorder the columns so that the second row of o matches
the first row of 7, then erase the matching rows.

Ecomple. «— (123 45 (12345
P& m=12 345 1) 2\3 215 4)

15

U_(12345>
32154 :m:<12345>
2 15 4 4 3215
2 1s)

To find 771, we simply exchange the upper and lower rows:

12345\ /2345 1\ (12345
23451) \12345) " \51234)



Cycles

A permutation 7 of a set X is called a cycle (or cyclic) of

length r if there exist r distinct elements x1, x3,...,x, € X
such that
m(x1) =%, (x) =x3 ..., m(x_1) = %, m(x,) = xq,

and 7(x) = x for any other x € X.
Notation. 7= (x1 X2 ... X,).

The identity function is (the only) cycle of length 1. Any
cycle of length 2 is called a transposition.

The inverse of a cycle is also a cycle of the same length.
Indeed, if T =(x1 X2 ... x,), then 771 = (x, x,_1 ... X2 x1).

Example. Any permutation of {1,2 3} is a cycle.

G : g) =1d, G ; 3) =(23), (; . g) —(12),
G ; ?) ~(123), G . g) —(132), (; 2 ?) _13)



