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Lecture 6:

Cyclic groups (continued).
Cayley graphs.

Permutations.



Cyclic groups

A cyclic group is a subgroup generated by a single element.

Cyclic group: 〈g〉 = {g n | n ∈ Z} (in multiplicative notation)
or 〈g〉 = {ng | n ∈ Z} (in additive notation).

Any cyclic group is abelian since g ngm = g n+m = gmg n for
all m, n ∈ Z.

If g has finite order n, then the cyclic group 〈g〉 consists of n
elements g , g 2, . . . , g n−1, g n = e.

If g is of infinite order, then 〈g〉 is infinite.

Examples of cyclic groups: Z, 3Z, Z5, Z8.

Examples of noncyclic groups: any uncountable group,
any non-abelian group, Q with addition, Q \ {0} with
multiplication.



Subgroups of a cyclic group

Theorem Every subgroup of a cyclic group is

cyclic as well.

Proof: Suppose that G is a cyclic group and H is a subgroup
of G . Let g be the generator of G , G = {g n | n ∈ Z}.
Denote by k the smallest positive integer such that g k ∈ H

(if there is no such integer then H = {e}, which is a cyclic
group). We are going to show that H = 〈g k〉.

Since g k ∈ H, it follows that 〈g k〉 ⊂ H. Let us show that
H ⊂ 〈g k〉. Take any h ∈ H. Then h = g n for some n ∈ Z.
We have n = kq + r , where q is the quotient and r is the
remainder after division of n by k (0 ≤ r < k). It follows that
g r = g n−kq = g ng−kq = h(g k)−q ∈ H. By the choice of k,
we obtain that r = 0. Thus h = g n = g kq = (g k)q ∈ 〈g k〉.



Examples

• Integers Z with addition.

The group is cyclic, Z = 〈1〉 = 〈−1〉. The proper cyclic
subgroups of Z are: the trivial subgroup {0} = 〈0〉 and, for
any integer m ≥ 2, the group mZ = 〈m〉 = 〈−m〉. These
are all subgroups of Z.

• Z5 with addition modulo 5.

The group is cyclic, Z5 = 〈1〉 = 〈2〉 = 〈3〉 = 〈4〉. The only
proper subgroup is the trivial subgroup {0} = 〈0〉.

• Z6 with addition modulo 6.

The group is cyclic, Z6 = 〈1〉 = 〈5〉. Proper subgroups are
{0} = 〈0〉, {0, 3} = 〈3〉 and {0, 2, 4} = 〈2〉 = 〈4〉.



Greatest common divisor

Given two nonzero integers a and b, the greatest

common divisor of a and b is the largest natural
number that divides both a and b.

Notation: gcd(a, b).

Example. a = 12, b = 18.
Natural divisors of 12 are 1, 2, 3, 4, 6, and 12.
Natural divisors of 18 are 1, 2, 3, 6, 9, and 18.
Common divisors are 1, 2, 3, and 6.
Thus gcd(12, 18) = 6.

Notice that gcd(12, 18) is divisible by any other
common divisor of 12 and 18.



Definition. Given nonzero integers a1, a2, . . . , ak , the
greatest common divisor gcd(a1, a2, . . . , ak) is the largest
positive integer that divides a1, a2, . . . , ak .

Theorem (i) gcd(a1, a2, . . . , ak) is the smallest positive
integer represented as n1a1 + n2a2 + · · ·+ nkak , where each
ni ∈ Z (that is, as an integral linear combination of
a1, a2, . . . , ak).
(ii) gcd(a1, a2, . . . , ak) is divisible by any other common

divisor of a1, a2, . . . , ak .

Proof. Consider an additive subgroup H of Z generated by
a1, a2, . . . , ak . The subgroup H consists exactly of integral
linear combinations of a1, a2, . . . , ak . Note that H is not a
trivial subgroup. By the above, H = mZ for some integer
m ≥ 1. Clearly, m is the smallest positive element of H and
a common divisor of a1, a2, . . . , ak . Since m ∈ H, it is an
integral linear combination of a1, a2, . . . , ak and hence is
divisible by any other common divisor.



Cayley graph
A finitely generated group G can be visualized via the Cayley
graph. Suppose a, b, . . . , c is a finite list of generators for
G . The Cayley graph is a directed graph (or digraph) with
labeled edges where vertices are elements of G and edges show
multiplication by generators. Namely, every edge is of the form
g

s
−→ gs. Alternatively, one can assign colors to generators

and think of the Cayley graph as a graph with colored edges.

The Cayley graph can be used for computations in G . For
example, let h = a2b−1ca−1. To compute gh, we need to find
a path of the form (note the directions of edges)

g
a
−→ g1

a
−→ g2

b
←− g3

c
−→ g4

a
←− g5.

Such a path exists and is unique. Then gh = g5.

Also, the Cayley graph can be used to find relations between
generators, which are equalities of the form g1g2 . . . gk = 1G ,
where each gi is a generator or the inverse of a generator.
Any relation corresponds to a closed path in the graph.



Examples of Cayley graphs

Group: Z5.
Generating set: {1}.

Group: Z. Generating set: {1}.

Group: Z6.

Generating set: {2, 3}.



Klein four-group

The Klein four-group V = {a, b, c, d} is a group with the
following Cayley table and Cayley graph:

∗ a b c d

a a b c d

b b a d c

c c d a b

d d c b a

dd

b

b

c
c

The group is abelian but not cyclic. The Cayley graph is
relative to the generating set {b, c, d} (a is the identity
element). Since every generator is its own inverse, each

directed edge g
s
−→ gs is accompanied by another edge

g
s
←− gs. This allows to consider the Cayley graph as a

graph with undirected edges.



Permutations

Let X be a nonempty set. A permutation of X is a bijective
function f : X → X .

Given two permutations π and σ of X , the composition πσ,
defined by πσ(x) = π(σ(x)), is called the product of these
permutations. In general, πσ 6= σπ, i.e., multiplication of
permutations is not commutative. However it is associative:
π(στ) = (πσ)τ .

All permutations of a set X form a group called the
symmetric group on X . Notation: SX , ΣX , Sym(X ).

All permutations of {1, 2, . . . , n} form a group called the
symmetric group on n symbols and denoted Sn or S(n).



Permutations of a finite set

The word “permutation” usually refers to

transformations of finite sets.

Permutations are traditionally denoted by Greek

letters (π, σ, τ , ρ,. . . ).

Two-row notation. π =

(

a b c . . .

π(a) π(b) π(c) . . .

)

,

where a, b, c , . . . is a list of all elements in the
domain of π. Rearrangement of columns does not

change the permutation.



Example. The symmetric group S3 consists of 6 permutations:
(

1 2 3

1 2 3

)

,

(

1 2 3

1 3 2

)

,

(

1 2 3

2 1 3

)

,

(

1 2 3

2 3 1

)

,

(

1 2 3

3 1 2

)

,

(

1 2 3

3 2 1

)

.

Theorem The symmetric group Sn has n! = 1 · 2 · 3 · . . . · n
elements.

Traditional argument: The number of elements in Sn is the
number of different rearrangements x1, x2, . . . , xn of the list
1, 2, . . . , n. There are n possibilities to choose x1. For any
choice of x1, there are n−1 possibilities to choose x2. And so
on. . .

Alternative argument: Any rearrangement of the list
1, 2, . . . , n can be obtained as follows. We take a
rearrangement of 1, 2, . . . , n−1 and then insert n into it. By
the inductive assumption, there are (n−1)! ways to choose a
rearrangement of 1, 2, . . . , n−1. For any choice, there are n

ways to insert n.



Product of permutations

Given two permutations π and σ, the composition πσ is called
the product of these permutations. Do not forget that the
composition is evaluated from right to left: (πσ)(x) = π(σ(x)).

To find πσ, we write π underneath σ (in two-row notation),
then reorder the columns so that the second row of σ matches
the first row of π, then erase the matching rows.

Example. π =

(

1 2 3 4 5

2 3 4 5 1

)

, σ =

(

1 2 3 4 5

3 2 1 5 4

)

.

σ =

(

1 2 3 4 5

3 2 1 5 4

)

π =

(

3 2 1 5 4

4 3 2 1 5

) =⇒ πσ =

(

1 2 3 4 5

4 3 2 1 5

)

To find π−1, we simply exchange the upper and lower rows:
(

1 2 3 4 5

2 3 4 5 1

)

−1

=

(

2 3 4 5 1

1 2 3 4 5

)

=

(

1 2 3 4 5

5 1 2 3 4

)

.



Cycles
A permutation π of a set X is called a cycle (or cyclic) of
length r if there exist r distinct elements x1, x2, . . . , xr ∈ X

such that

π(x1) = x2, π(x2) = x3, . . . , π(xr−1) = xr , π(xr) = x1,

and π(x) = x for any other x ∈ X .

Notation. π = (x1 x2 . . . xr).

The identity function is (the only) cycle of length 1. Any
cycle of length 2 is called a transposition.

The inverse of a cycle is also a cycle of the same length.
Indeed, if π = (x1 x2 . . . xr), then π

−1 = (xr xr−1 . . . x2 x1).

Example. Any permutation of {1, 2, 3} is a cycle.
(

1 2 3
1 2 3

)

= id,

(

1 2 3
1 3 2

)

= (2 3),

(

1 2 3
2 1 3

)

= (1 2),
(

1 2 3
2 3 1

)

=(1 2 3),

(

1 2 3
3 1 2

)

=(1 3 2),

(

1 2 3
3 2 1

)

=(1 3).


