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Modern Algebra I

Lecture 9:
Direct product of groups.

Factor groups.



Direct product of binary structures

Given nonempty sets G and H, the Cartesian product G × H

is the set of all ordered pairs (g , h) such that g ∈ G and
h ∈ H. Suppose ∗ is a binary operation on G and ⋆ is a
binary operation on H. Then we can define a binary operation
• on G × H by

(g1, h1) • (g2, h2) = (g1 ∗ g2, h1 ⋆ h2).

Proposition 1 The operation • is fully (resp. uniquely, well)
defined if and only if both ∗ and ⋆ are.

Proposition 2 The operation • is associative (resp.
commutative) if and only if both ∗ and ⋆ are.

Proposition 3 A pair (eG , eH) is the identity element in
G × H if and only if eG is the identity element in G and eH is
the identity element in H.

Proposition 4 (g ′, h′) = (g , h)−1 in G × H if and only if
g ′ = g−1 in G and h′ = h−1 in H.



Direct product of groups

Given nonempty sets G and H, the Cartesian product G × H

is the set of all ordered pairs (g , h) such that g ∈ G and
h ∈ H. Suppose ∗ is a binary operation on G and ⋆ is a
binary operation on H. Then we can define a binary operation
• on G × H by

(g1, h1) • (g2, h2) = (g1 ∗ g2, h1 ⋆ h2).

Theorem The set G × H with the operation • is a group if
and only if both (G , ∗) and (H, ⋆) are groups.

The group G × H is called the direct product of the groups
G and H. Usually the same notation (multiplicative or
additive) is used for all three groups:

(g1, h1)(g2, h2) = (g1g2, h1h2) or
(g1, h1) + (g2, h2) = (g1 + g2, h1 + h2).

Similarly, we can define the direct product G1 × G2 × · · · × Gn

of any finite collection of groups G1,G2, . . . ,Gn.



Examples.

• Z2 × Z3 (with +2 in Z2 and +3 in Z3).

The group consists of 6 elements. It is abelian since Z2 and
Z3 are both abelian. The identity element is (0, 0).
Let g = (1, 1). Then 2g = g + g = (0, 2), 3g = (1, 0),
4g = (0, 1), 5g = (1, 2), and 6g = (0, 0). It follows that
Z2 × Z3 is a cyclic group, Z2 × Z3 = 〈g〉.

• Z2 × Z2 (with +2 in Z2).

The group consists of 4 elements. Each of the three nonzero
elements (1, 0), (0, 1) and (1, 1) has order 2. It follows that
the direct product is not a cyclic group. Note that the sum of
any two of the three nonzero elements equals the third one.
Hence Z2 × Z2 is a model of the Klein 4-group.



Theorem Let G1,G2, . . . ,Gk be groups and suppose gi is an
element of finite order ni in Gi , 1 ≤ i ≤ k. Then the element
g = (g1, g2, . . . , gk) has finite order in G1 × G2 × · · · × Gk

equal to lcm(n1, n2, . . . , nk).

Proof: Let us use multiplicative notation for all groups.
It follows from the definition of the direct product that
g n = (g n

1
, g n

2
, . . . , g n

k
) for any integer n > 0. Hence g n is the

identity element in the direct product if and only if each g n

i
is

the identity element in Gi . For the latter, we need n to be
divisible by each ni . The least number with this property is
lcm(n1, n2, . . . , nk).

Corollary The direct product Zn1
× Zn2

× · · · × Znk
is a

cyclic group if and only if the numbers n1, n2, . . . , nk are
pairwise coprime.

For example, groups Z3 × Z5, Z4 × Z15 and Z2 × Z5 × Z7

are cyclic while groups Z4 × Z6 and Z2 × Z2 × Z3 are not.



Corollary The direct product Zn1
× Zn2

× · · · × Znk
is a

cyclic group if and only if the numbers n1, n2, . . . , nk are
pairwise coprime.

Proof: A finite group is cyclic if and only if it has an element
of the same order as the order of the group. Consider an
arbitrary element g = (g1, g2, . . . , gk) of the direct product.
Let mi be the order of gi in the group Gi , 1 ≤ i ≤ k. By the
theorem, the order of g equals lcm(m1,m2, . . . ,mk). By
Lagrange’s Theorem, each mi (the order of the element gi)
divides ni (the order of the group Zni

). It follows that
lcm(m1,m2, . . . ,mk) divides lcm(n1, n2, . . . , nk). Moreover,
if g = (1, 1, . . . , 1) then mi = ni for all i so that the order of
g is exactly lcm(n1, n2, . . . , nk). We conclude that
lcm(n1, n2, . . . , nk) is the largest possible order for an element
in our direct product. Thus the direct product is a cyclic
group if and only if lcm(n1, n2, . . . , nk) = n1n2 . . . nk , which
happens exactly when the numbers n1, n2, . . . , nk are pairwise
coprime.



Factor space

Let X be a nonempty set and ∼ be an equivalence relation on
X . Given an element x ∈ X , the equivalence class of x ,
denoted [x ]∼ or simply [x ], is the set of all elements of X that
are equivalent (i.e., related by ∼) to x :

[x ]∼ = {y ∈ X | y ∼ x}.

Theorem Equivalence classes of the relation ∼ form a
partition of the set X .

The set of all equivalence classes of ∼ is denoted X/∼ and
called the factor space (or quotient space) of X by the
relation ∼.

In the case when the set X carries some structure (algebraic,
geometric, analytic, etc.), this structure may (or may not)
induce an analogous structure on the factor space X/∼.



Examples of factor spaces

• X = G , a group; x ∼ y if and only if x = yh for some
h ∈ H, where H is a fixed subgroup.

Equivalence class of an element g ∈ G is a left coset of the
subgroup H, [g ]∼ = gH. The factor space G/∼ is the set of
all left cosets of H in G . It is usually denoted G/H.

• X = G , a group; x ∼ y if and only if x = hy for some
h ∈ H, where H is a fixed subgroup.

Equivalence class of an element g ∈ G is a right coset of the
subgroup H, [g ]∼ = Hg . The factor space G/∼ is the set of
all right cosets of H in G . It is often denoted H\G .

• X = G , a group; x ∼ y if and only if x ∈ KyH = {kyh :
h ∈ H, k ∈ K}, where H and K are fixed subgroups.

In this example, [g ]∼ = KgH (a double coset). The factor
space G/∼ is usually denoted K\G/H.



Factor group

Let G be a nonempty set with a binary operation ∗. Given
an equivalence relation ∼ on G , we say that the relation ∼ is
compatible with the operation ∗ if for any g1, g2, h1, h2 ∈ G ,

g1 ∼ g2 and h1 ∼ h2 =⇒ g1 ∗ h1 ∼ g2 ∗ h2.

If this is the case, we can define an operation on the factor
space G/∼ by [g ] ⋆ [h] = [g ∗ h] for all g , h ∈ G .
Compatibility is required so that the operation ⋆ is defined
uniquely: if [g ′] = [g ] and [h′] = [h] then [g ′ ∗ h′] = [g ∗ h].

If the operation ∗ is associative (resp. commutative), then so
is ⋆. If e is the identity element for ∗, then its equivalence
class [e] is the identity element for ⋆. If h = g−1 in (G , ∗),
then [h] = [g ]−1 in (G/∼, ⋆).

Thus, if (G , ∗) is a group then (G/∼, ⋆) is also a group
called the factor group (or quotient group). Moreover,
if the group (G , ∗) is abelian then so is (G/∼, ⋆).



Question. When is an equivalence relation ∼ on a group G

compatible with the operation?

Let G be a group and assume that an equivalence relation ∼
on G is compatible with the operation (so that the factor
space G/∼ is also the factor group). For simplicity, let us
use multiplicative notation.

Lemma 1 The equivalence class of the identity element is a
subgroup of G .

Proof. Let H = [e]∼ be the equivalence class of the identity
element e. We need to show that (i) e ∈ H, (ii) h1, h2 ∈ H

=⇒ h1h2 ∈ H, and (iii) h ∈ H =⇒ h−1 ∈ H.

By reflexivity, e ∼ e. Hence e ∈ H. Further, if h1, h2 ∈ H,
then h1 ∼ e and h2 ∼ e. By compatibility, h1h2 ∼ ee = e

so that h1h2 ∈ H. Next, if h ∈ H then h ∼ e. Also,
h−1 ∼ h−1. By compatibility, hh−1 ∼ eh−1, that is, e ∼ h−1.
By symmetry, h−1 ∼ e so that h−1 ∈ H.



Lemma 2 Each equivalence class is a left coset of the
subgroup H = [e]∼.

Proof. We need to prove that [g ]∼ = gH for all g ∈ G . We
are going to show that gH ⊂ [g ]∼ and [g ]∼ ⊂ gH.

Suppose a ∈ gH, that is, a = gh for some h ∈ H. Then
g ∼ g and h ∼ e, which implies that gh ∼ ge = g . Hence
a ∈ [g ]∼. Conversely, suppose a ∈ [g ]∼. We have
a = ea = (gg−1)a = g(g−1a). Since g−1 ∼ g−1 and a ∼ g ,
it follows that g−1a ∼ g−1g = e. Hence g−1a ∈ H so that
a = g(g−1a) ∈ gH.

Lemma 3 Each equivalence class is a right coset of the
subgroup H = [e]∼.

Proof. Analogous to the proof of Lemma 2.

Definition. A subgroup H of a group G is called normal if
gH = Hg for all g ∈ G , that is, each left coset of H is also a
right coset. Notation: H ⊳ G or H E G .



Factor group

Question. When is an equivalence relation ∼ on

a group G compatible with the operation?

Theorem Assume that the factor space G/∼ is
also a factor group. Then

(i) H = [e]∼, the equivalence class of the identity
element, is a subgroup of G ,
(ii) [g ]∼ = gH for all g ∈ G ,

(iii) G/∼ = G/H ,
(iv) the subgroup H is normal, which means that

gH = Hg for all g ∈ G .

Theorem If H is a normal subgroup of a group G ,
then G/H is indeed a factor group.



Alternative construction of the factor group

Suppose G is a group (with multiplicative notation).
For any X ,Y ⊂ G let XY = {xy | x ∈ X , y ∈ Y }.

This “multiplication of sets” is a well-defined
operation on P(G ), the set of all subsets of G .
The operation is associative: (XY )Z = X (YZ ) for

any sets X ,Y ,Z ⊂ G . Indeed,

(XY )Z = {(xy)z | x ∈ X , y ∈ Y , z ∈ Z},

X (YZ ) = {x(yz) | x ∈ X , y ∈ Y , z ∈ Z}.

Proposition If H is a normal subgroup of G , then
for all a, b ∈ G we have (aH)(bH) = (ab)H in the
sense of the above definition.



Alternative construction of the factor group

Suppose G is a group (with multiplicative notation). For any
sets X ,Y ⊂ G let XY = {xy | x ∈ X , y ∈ Y }.

Proposition If H is a normal subgroup of G , then for all
a, b ∈ G we have (aH)(bH) = (ab)H in the sense of the
above definition.

Proof. In terms of multiplication of sets, any coset gH can be
written as {g}H. Therefore (aH)(bH) = ({a}H)({b}H).
By associativity, this is the same as {a}(H{b})H. Now
H{b} is the right coset Hb. Since the subgroup H is normal,
we have Hb = bH = {b}H. Again by associativity,

(aH)(bH) = {a}({b}H)H = ({a}{b})(HH).

Clearly, {a}{b} = {ab}. It remains to show that HH = H.
Indeed, HH ⊂ H since the subgroup H is closed under the
operation. Conversely, H = {e}H ⊂ HH.


