MATH 415 Modern Algebra I

Lecture 17: Modular arithmetic.

Congruences

Let *n* be a positive integer. The integers *a* and *b* are called **congruent modulo** *n* if they have the same remainder when divided by *n*. An equivalent condition is that *n* divides the difference a - b.

Notation. $a \equiv b \mod n$ or $a \equiv b \pmod{n}$.

Examples. $12 \equiv 4 \mod 8$, $24 \equiv 0 \mod 6$, $31 \equiv -4 \mod 35$.

Proposition If $a \equiv b \mod n$ then for any integer *c*, (i) $a + cn \equiv b \mod n$; (ii) $a + c \equiv b + c \mod n$; (iii) $ac \equiv bc \mod n$.

Indeed, if a - b = kn, where k is an integer, then (a + cn) - b = a - b + cn = (k + c)n, (a + c) - (b + c) = a - b = kn, and ac - bc = (a - b)c = (kc)n.

More properties of congruences

Proposition If $a \equiv a' \mod n$ and $b \equiv b' \mod n$, then (i) $a + b \equiv a' + b' \mod n$; (ii) $a - b \equiv a' - b' \mod n$; (iii) $ab \equiv a'b' \mod n$.

Proof: Since $a \equiv a' \mod n$ and $b \equiv b' \mod n$, the number n divides a - a' and b - b', i.e., a - a' = kn and $b - b' = \ell n$, where $k, \ell \in \mathbb{Z}$. Then n also divides

$$\begin{aligned} (a+b)-(a'+b') &= (a-a')+(b-b') = kn + \ell n = (k+\ell)n, \\ (a-b)-(a'-b') &= (a-a')-(b-b') = kn - \ell n = (k-\ell)n, \\ ab-a'b' &= ab-ab'+ab'-a'b' = a(b-b')+(a-a')b' \\ &= a(\ell n) + (kn)b' = (a\ell + kb')n. \end{aligned}$$

Divisibility of decimal integers

Let $\overline{d_k d_{k-1} \dots d_3 d_2 d_1}$ be the decimal notation of a positive integer n ($0 \le d_i \le 9$). Then $n = d_1 + 10d_2 + 10^2d_3 + \dots + 10^{k-2}d_{k-1} + 10^{k-1}d_k.$

Proposition 1 The integer *n* is divisible by 2, 5 or 10 if and only if the last digit d_1 is divisible by the same number.

Proposition 2 The integer *n* is divisible by 4, 20, 25, 50 or 100 if and only if $\overline{d_2d_1}$ is divisible by the same number.

Proposition 3 The integer *n* is divisible by 3 or 9 if and only if the sum of its digits $d_k + \cdots + d_2 + d_1$ is divisible by the same number.

Proposition 4 The integer *n* is divisible by 11 if and only if the alternating sum of its digits $(-1)^{k-1}d_k + \cdots + d_3 - d_2 + d_1$ is divisible by 11. *Hint:* $10^m \equiv 1 \mod 9$, $10^m \equiv 1 \mod 3$, $10^m \equiv (-1)^m \mod 11$.

Congruence classes

Given an integer a, the **congruence class of** a **modulo** n is the set of all integers congruent to a modulo n.

Notation. $[a]_n$ or simply [a]. Also denoted $a + n\mathbb{Z}$ as $[a]_n = \{a + nk \mid k \in \mathbb{Z}\}$. Also denoted $a \mod n$.

Examples. $[0]_2$ is the set of even integers, $[1]_2$ is the set of odd integers, $[2]_4$ is the set of even integers not divisible by 4.

If *n* divides a positive integer *m*, then every congruence class modulo *n* is the union of m/n congruence classes modulo *m*. For example, $[2]_4 = [2]_8 \cup [6]_8$.

The congruence class $[a]_n = a + n\mathbb{Z}$ is a coset of the subgroup $n\mathbb{Z}$ of the group \mathbb{Z} . Hence the set of all congruence classes modulo n is the factor space $\mathbb{Z}/n\mathbb{Z}$. It is usually identified with \mathbb{Z}_n so that $\mathbb{Z}_n = \{[0]_n, [1]_n, [2]_n, \dots, [n-1]_n\}$.

Modular arithmetic

Modular arithmetic is an arithmetic on the set $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ for some $n \ge 1$. The arithmetic operations on \mathbb{Z}_n are defined as follows. For any integers *a* and *b*, we let

$$[a]_n + [b]_n = [a + b]_n, [a]_n - [b]_n = [a - b]_n, [a]_n [b]_n = [ab]_n.$$

Theorem The arithmetic operations on \mathbb{Z}_n are defined uniquely, namely, they do not depend on the choice of representatives a, b for the congruence classes.

Proof: Let a' be another representative of $[a]_n$ and b' be another representative of $[b]_n$. Then $a' \equiv a \mod n$ and $b' \equiv b \mod n$. According to a previously proved proposition, this implies $a' + b' \equiv a + b \mod n$, $a' - b' \equiv a - b \mod n$ and $a'b' \equiv ab \mod n$. In other words, $[a' + b']_n = [a + b]_n$, $[a' - b']_n = [a - b]_n$ and $[a'b']_n = [ab]_n$.

Invertible congruence classes

The set $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$, with addition and multiplication defined above, forms a commutative ring with unity. The unity is $[1]_n$. We say that a congruence class $[a]_n$ is **invertible** (or the integer *a* is **invertible modulo** *n*) if $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n , that is, $ab \equiv 1 \mod n$ for some $b \in \mathbb{Z}$. If this is the case, then *b* is called a **multiplicative inverse of** *a* **modulo** *n*.

The set of all invertible congruence classes in \mathbb{Z}_n is denoted G_n or \mathbb{Z}_n^* . It is a multiplicative group (which is true for any ring with unity).

Theorem A nonzero congruence class $[a]_n$ is invertible if and only if gcd(a, n) = 1. Otherwise it is a divisor of zero.

Corollary The ring \mathbb{Z}_n is a field if and only if *n* is prime.

Theorem A nonzero congruence class $[a]_n$ is invertible if and only if gcd(a, n) = 1. Otherwise $[a]_n$ is a divisor of zero.

Proof: Let $d = \gcd(a, n)$. If d > 1 then n/d and a/d are integers, $\lfloor n/d \rfloor_n \neq \lfloor 0 \rfloor_n$, and $\lfloor a \rfloor_n \lfloor n/d \rfloor_n = \lfloor an/d \rfloor_n = \lfloor a/d \rfloor_n \lfloor n \rfloor_n = \lfloor a/d \rfloor_n \lfloor 0 \rfloor_n$. Hence $\lfloor a \rfloor_n$ is a divisor of zero.

Now consider the case gcd(a, n) = 1. In this case 1 is an integral linear combination of a and n: ma + kn = 1 for some $m, k \in \mathbb{Z}$. Then $[1]_n = [ma + kn]_n = [ma]_n = [m]_n[a]_n$. Thus $[a]_n$ is invertible and $[a]_n^{-1} = [m]_n$.

Linear congruences

Linear congruence is a congruence of the form $ax \equiv b \mod n$, where x is an integer variable. We can regard it as a linear equation in \mathbb{Z}_n : $[a]_n X = [b]_n$.

In the case b = 1, solving the linear congruence is equivalent to finding the inverse of the congruence class $[a]_n$. In the case b = 0, it is equivalent to determining if $[a]_n$ is a zero-divisor.

Proposition 1 If the congruence class $[a]_n$ is invertible and a' is a multiplicative inverse of a modulo n, then the congruence $ax \equiv b \mod n$ is equivalent to $x \equiv a'b \mod n$.

Proposition 2 Let $a, b, c, n \in \mathbb{Z}$ and $c, n \ge 1$. Then the congruence $ac \equiv bc \mod nc$ is equivalent to $a \equiv b \mod n$.

Proposition 3 Let $a, b, c, n \in \mathbb{Z}$ and $c, n \ge 1$. If $ac \equiv bc \mod n$ and gcd(c, n) = 1, then $a \equiv b \mod n$.

Theorem The linear congruence $ax \equiv b \mod n$ has a solution if and only if $d = \gcd(a, n)$ divides b. If this is the case then the solution set consists of d congruence classes modulo n that form a single congruence class modulo n/d.

Proof: If the congruence has a solution x, then ax = b + kn for some $k \in \mathbb{Z}$. Hence b = ax - kn, which is divisible by gcd(a, n).

Conversely, assume that d divides b. Then the linear congruence is equivalent to $a'x \equiv b' \mod m$, where a' = a/d, b' = b/d and m = n/d. In other words, $[a']_m X = [b']_m$, where $X = [x]_m$.

We have gcd(a', m) = gcd(a/d, n/d) = gcd(a, n)/d = 1. Hence the congruence class $[a']_m$ is invertible. It follows that all solutions x of the linear congruence form a single congruence class modulo m, $X = [a']_m^{-1} [b']_m$. This congruence class splits into d distinct congruence classes modulo n = md. **Problem.** Solve the congruence $12x \equiv 6 \mod 21$.

$$\iff 4x \equiv 2 \mod 7 \iff 2x \equiv 1 \mod 7$$
$$\iff [x]_7 = [2]_7^{-1} = [4]_7$$
$$\iff [x]_{21} = [4]_{21} \text{ or } [11]_{21} \text{ or } [18]_{21}.$$

Problem. Find all integer solutions of the equation 12x - 21y = 6.

For any integer solution of the equation, the number x is a solution of the linear congruence $12x \equiv 6 \mod 21$. By the above, $x \equiv 4 \mod 7$, that is, x = 4 + 7k for some $k \in \mathbb{Z}$. Then y = (12x - 6)/21 = (12(4 + 7k) - 6)/21 = 2 + 4k, which is also integer. Thus the general integer solution is x = 4 + 7k, y = 2 + 4k, where $k \in \mathbb{Z}$.

Corollaries of Lagrange's Theorem

Fermat's Little Theorem If p is a prime number then $a^{p-1} \equiv 1 \mod p$ for any integer a that is not a multiple of p. *Proof:* If a is not a multiple of p then $[a]_p$ is in G_p , the multiplicative group of invertible congruence classes modulo p. Lagrange's Theorem implies that the order of $[a]_p$ in G_p divides $|G_p| = p - 1$. It follows that $[a]_p^{p-1} = [1]_p$, which means that $a^{p-1} \equiv 1 \mod p$.

Euler's Theorem If *n* is a positive integer and $\phi(n)$ is the number of integers between 1 and *n* coprime with *n*, then $a^{\phi(n)} \equiv 1 \mod n$ for any integer *a* coprime with *n*.

Proof: $a^{\phi(n)} \equiv 1 \mod n$ means that $[a]_n^{\phi(n)} = [1]_n$. The number *a* is coprime with *n*, i.e., gcd(a, n) = 1, implies that the congruence class $[a]_n$ is in G_n . It remains to notice that $|G_n| = \phi(n)$ and apply Lagrange's Theorem.

Problem. Determine the last two digits of 3^{2022} .

The last two digits form the remainder after division by 100.

First let us compute $\phi(100)$. Since $100 = 2^2 \cdot 5^2$, an integer k is coprime with 100 if and only if it is not divisible by 2 or 5. Among integers from 1 to 100, there are 50 = 100/2 even numbers and 20 = 100/5 numbers divisible by 5. Note that some of them are divisible by both 2 and 5. These are exactly numbers divisible by 10. There are 10 = 100/10 such numbers. We conclude that $\phi(100) = 100 - 50 - 20 + 10 = 40$.

By Euler's Theorem, $3^{40} \equiv 1 \mod 100$. Then $[3^{2022}] = [3]^{2022} = [3]^{40\cdot50+22} = ([3]^{40})^{50} [3]^{22} = [3]^{22}$ $= ([3]^5)^4 [3]^2 = [243]^4 [9] = [43]^4 [9] = [(50-7)^2]^2 [9]$ $= [7^2]^2 [9] = [49]^2 [9] = [(50-1)^2] [9] = [1^2] [9] = [9].$

Thus $3^{2022} = \dots 09$.