MATH 415
 Modern Algebra I

Lecture 17:
 Modular arithmetic.

Congruences

Let n be a positive integer. The integers a and b are called congruent modulo n if they have the same remainder when divided by n. An equivalent condition is that n divides the difference $a-b$.
Notation. $a \equiv b \bmod n$ or $a \equiv b(\bmod n)$.
Examples. $12 \equiv 4 \bmod 8, \quad 24 \equiv 0 \bmod 6, \quad 31 \equiv-4 \bmod 35$.
Proposition If $a \equiv b \bmod n$ then for any integer c,
(i) $a+c n \equiv b \bmod n$;
(ii) $a+c \equiv b+c \bmod n$;
(iii) $a c \equiv b c \bmod n$.

Indeed, if $a-b=k n$, where k is an integer, then
$(a+c n)-b=a-b+c n=(k+c) n$,
$(a+c)-(b+c)=a-b=k n$, and
$a c-b c=(a-b) c=(k c) n$.

More properties of congruences

Proposition If $a \equiv a^{\prime} \bmod n$ and $b \equiv b^{\prime} \bmod n$, then (i) $a+b \equiv a^{\prime}+b^{\prime} \bmod n$;
(ii) $a-b \equiv a^{\prime}-b^{\prime} \bmod n$;
(iii) $a b \equiv a^{\prime} b^{\prime} \bmod n$.

Proof: Since $a \equiv a^{\prime} \bmod n$ and $b \equiv b^{\prime} \bmod n$, the number n divides $a-a^{\prime}$ and $b-b^{\prime}$, i.e., $a-a^{\prime}=k n$ and $b-b^{\prime}=\ell n$, where $k, \ell \in \mathbb{Z}$. Then n also divides

$$
\begin{gathered}
(a+b)-\left(a^{\prime}+b^{\prime}\right)=\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right)=k n+\ell n=(k+\ell) n, \\
(a-b)-\left(a^{\prime}-b^{\prime}\right)=\left(a-a^{\prime}\right)-\left(b-b^{\prime}\right)=k n-\ell n=(k-\ell) n, \\
a b-a^{\prime} b^{\prime}=a b-a b^{\prime}+a b^{\prime}-a^{\prime} b^{\prime}=a\left(b-b^{\prime}\right)+\left(a-a^{\prime}\right) b^{\prime} \\
=a(\ell n)+(k n) b^{\prime}=\left(a \ell+k b^{\prime}\right) n .
\end{gathered}
$$

Divisibility of decimal integers

Let $\overline{d_{k} d_{k-1} \ldots d_{3} d_{2} d_{1}}$ be the decimal notation of a positive integer $n\left(0 \leq d_{i} \leq 9\right)$. Then

$$
n=d_{1}+10 d_{2}+10^{2} d_{3}+\cdots+10^{k-2} d_{k-1}+10^{k-1} d_{k} .
$$

Proposition 1 The integer n is divisible by 2,5 or 10 if and only if the last digit d_{1} is divisible by the same number.

Proposition 2 The integer n is divisible by 4, 20, 25, 50 or 100 if and only if $\overline{d_{2} d_{1}}$ is divisible by the same number.

Proposition 3 The integer n is divisible by 3 or 9 if and only if the sum of its digits $d_{k}+\cdots+d_{2}+d_{1}$ is divisible by the same number.
Proposition 4 The integer n is divisible by 11 if and only if the alternating sum of its digits
$(-1)^{k-1} d_{k}+\cdots+d_{3}-d_{2}+d_{1}$ is divisible by 11 .
Hint: $10^{m} \equiv 1 \bmod 9,10^{m} \equiv 1 \bmod 3,10^{m} \equiv(-1)^{m} \bmod 11$.

Congruence classes

Given an integer a, the congruence class of a modulo n is the set of all integers congruent to a modulo n.
Notation. $[a]_{n}$ or simply [a]. Also denoted $a+n \mathbb{Z}$ as $[a]_{n}=\{a+n k \mid k \in \mathbb{Z}\}$. Also denoted $a \bmod n$.

Examples. $[0]_{2}$ is the set of even integers, $[1]_{2}$ is the set of odd integers, $[2]_{4}$ is the set of even integers not divisible by 4.

If n divides a positive integer m, then every congruence class modulo n is the union of m / n congruence classes modulo m. For example, $[2]_{4}=[2]_{8} \cup[6]_{8}$.

The congruence class $[a]_{n}=a+n \mathbb{Z}$ is a coset of the subgroup $n \mathbb{Z}$ of the group \mathbb{Z}. Hence the set of all congruence classes modulo n is the factor space $\mathbb{Z} / n \mathbb{Z}$. It is usually identified with \mathbb{Z}_{n} so that $\mathbb{Z}_{n}=\left\{[0]_{n},[1]_{n},[2]_{n}, \ldots,[n-1]_{n}\right\}$.

Modular arithmetic

Modular arithmetic is an arithmetic on the set $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$ for some $n \geq 1$. The arithmetic operations on \mathbb{Z}_{n} are defined as follows. For any integers a and b, we let

$$
\begin{aligned}
{[a]_{n}+[b]_{n} } & =[a+b]_{n}, \\
{[a]_{n}-[b]_{n} } & =[a-b]_{n}, \\
{[a]_{n}[b]_{n} } & =[a b]_{n} .
\end{aligned}
$$

Theorem The arithmetic operations on \mathbb{Z}_{n} are defined uniquely, namely, they do not depend on the choice of representatives a, b for the congruence classes.
Proof: Let a^{\prime} be another representative of $[a]_{n}$ and b^{\prime} be another representative of $[b]_{n}$. Then $a^{\prime} \equiv a \bmod n$ and $b^{\prime} \equiv b \bmod n$. According to a previously proved proposition, this implies $a^{\prime}+b^{\prime} \equiv a+b \bmod n, a^{\prime}-b^{\prime} \equiv a-b \bmod n$ and $a^{\prime} b^{\prime} \equiv a b \bmod n$. In other words, $\left[a^{\prime}+b^{\prime}\right]_{n}=[a+b]_{n}$, $\left[a^{\prime}-b^{\prime}\right]_{n}=[a-b]_{n}$ and $\left[a^{\prime} b^{\prime}\right]_{n}=[a b]_{n}$.

Invertible congruence classes

The set $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$, with addition and multiplication defined above, forms a commutative ring with unity. The unity is $[1]_{n}$. We say that a congruence class $[a]_{n}$ is invertible (or the integer a is invertible modulo n) if $[a]_{n}$ has a multiplicative inverse in \mathbb{Z}_{n}, that is, $a b \equiv 1 \bmod n$ for some $b \in \mathbb{Z}$. If this is the case, then b is called a multiplicative inverse of a modulo n.
The set of all invertible congruence classes in \mathbb{Z}_{n} is denoted G_{n} or \mathbb{Z}_{n}^{*}. It is a multiplicative group (which is true for any ring with unity).

Theorem A nonzero congruence class [a] is invertible if and only if $\operatorname{gcd}(a, n)=1$. Otherwise it is a divisor of zero.

Corollary The ring \mathbb{Z}_{n} is a field if and only if n is prime.

Theorem A nonzero congruence class [a] ${ }_{n}$ is invertible if and only if $\operatorname{gcd}(a, n)=1$. Otherwise $[a]_{n}$ is a divisor of zero.

Proof: Let $d=\operatorname{gcd}(a, n)$. If $d>1$ then n / d and a / d are integers, $[n / d]_{n} \neq[0]_{n}$, and $[a]_{n}[n / d]_{n}=$ $=[a n / d]_{n}=[a / d]_{n}[n]_{n}=[a / d]_{n}[0]_{n}=[0]_{n}$. Hence $[a]_{n}$ is a divisor of zero.
Now consider the case $\operatorname{gcd}(a, n)=1$. In this case 1 is an integral linear combination of a and n : $m a+k n=1$ for some $m, k \in \mathbb{Z}$. Then

$$
[1]_{n}=[m a+k n]_{n}=[m a]_{n}=[m]_{n}[a]_{n} .
$$

Thus $[a]_{n}$ is invertible and $[a]_{n}^{-1}=[m]_{n}$.

Linear congruences

Linear congruence is a congruence of the form $a x \equiv b \bmod n$, where x is an integer variable. We can regard it as a linear equation in $\mathbb{Z}_{n}:[a]_{n} X=[b]_{n}$.
In the case $b=1$, solving the linear congruence is equivalent to finding the inverse of the congruence class $[a]_{n}$. In the case $b=0$, it is equivalent to determining if [a] n is a zero-divisor.

Proposition 1 If the congruence class $[a]_{n}$ is invertible and a^{\prime} is a multiplicative inverse of a modulo n, then the congruence $a x \equiv b \bmod n$ is equivalent to $x \equiv a^{\prime} b \bmod n$.

Proposition 2 Let $a, b, c, n \in \mathbb{Z}$ and $c, n \geq 1$. Then the congruence $a c \equiv b c \bmod n c$ is equivalent to $a \equiv b \bmod n$.

Proposition 3 Let $a, b, c, n \in \mathbb{Z}$ and $c, n \geq 1$. If $a c \equiv b c \bmod n$ and $\operatorname{gcd}(c, n)=1$, then $a \equiv b \bmod n$.

Theorem The linear congruence $a x \equiv b \bmod n$ has a solution if and only if $d=\operatorname{gcd}(a, n)$ divides b. If this is the case then the solution set consists of d congruence classes modulo n that form a single congruence class modulo n / d.

Proof: If the congruence has a solution x, then $a x=b+k n$ for some $k \in \mathbb{Z}$. Hence $b=a x-k n$, which is divisible by $\operatorname{gcd}(a, n)$.
Conversely, assume that d divides b. Then the linear congruence is equivalent to $a^{\prime} x \equiv b^{\prime} \bmod m$, where $a^{\prime}=a / d$, $b^{\prime}=b / d$ and $m=n / d$. In other words, $\left[a^{\prime}\right]_{m} X=\left[b^{\prime}\right]_{m}$, where $X=[x]_{m}$.
We have $\operatorname{gcd}\left(a^{\prime}, m\right)=\operatorname{gcd}(a / d, n / d)=\operatorname{gcd}(a, n) / d=1$. Hence the congruence class $\left[a^{\prime}\right]_{m}$ is invertible. It follows that all solutions x of the linear congruence form a single congruence class modulo $m, X=\left[a^{\prime}\right]_{m}^{-1}\left[b^{\prime}\right]_{m}$. This congruence class splits into d distinct congruence classes modulo $n=m d$.

Problem. Solve the congruence $12 x \equiv 6 \bmod 21$.
$\Longleftrightarrow 4 x \equiv 2 \bmod 7 \Longleftrightarrow 2 x \equiv 1 \bmod 7$
$\Longleftrightarrow[x]_{7}=[2]_{7}^{-1}=[4]_{7}$
$\Longleftrightarrow[x]_{21}=[4]_{21}$ or $[11]_{21}$ or $[18]_{21}$.

Problem. Find all integer solutions of the equation $12 x-21 y=6$.

For any integer solution of the equation, the number x is a solution of the linear congruence $12 x \equiv 6 \bmod 21$. By the above, $x \equiv 4 \bmod 7$, that is, $x=4+7 k$ for some $k \in \mathbb{Z}$. Then $y=(12 x-6) / 21=(12(4+7 k)-6) / 21=2+4 k$, which is also integer. Thus the general integer solution is $x=4+7 k, y=2+4 k$, where $k \in \mathbb{Z}$.

Corollaries of Lagrange's Theorem

Fermat's Little Theorem If p is a prime number then $a^{p-1} \equiv 1 \bmod p$ for any integer a that is not a multiple of p.
Proof: If a is not a multiple of p then $[a]_{p}$ is in G_{p}, the multiplicative group of invertible congruence classes modulo p. Lagrange's Theorem implies that the order of $[a]_{p}$ in G_{p} divides $\left|G_{p}\right|=p-1$. It follows that $[a]_{p}^{p-1}=[1]_{p}$, which means that $a^{p-1} \equiv 1 \bmod p$.

Euler's Theorem If n is a positive integer and $\phi(n)$ is the number of integers between 1 and n coprime with n, then $a^{\phi(n)} \equiv 1 \bmod n$ for any integer a coprime with n.
Proof: $a^{\phi(n)} \equiv 1 \bmod n$ means that $[a]_{n}^{\phi(n)}=[1]_{n}$. The number a is coprime with n, i.e., $\operatorname{gcd}(a, n)=1$, implies that the congruence class [a]n is in G_{n}. It remains to notice that $\left|G_{n}\right|=\phi(n)$ and apply Lagrange's Theorem.

Problem. Determine the last two digits of 3^{2022}.
The last two digits form the remainder after division by 100 .
First let us compute $\phi(100)$. Since $100=2^{2} \cdot 5^{2}$, an integer k is coprime with 100 if and only if it is not divisible by 2 or 5 . Among integers from 1 to 100 , there are $50=100 / 2$ even numbers and $20=100 / 5$ numbers divisible by 5 . Note that some of them are divisible by both 2 and 5 . These are exactly numbers divisible by 10 . There are $10=100 / 10$ such numbers. We conclude that $\phi(100)=100-50-20+10=40$.
By Euler's Theorem, $3^{40} \equiv 1 \bmod 100$. Then

$$
\begin{aligned}
{\left[3^{2022}\right]} & =[3]^{2022}=[3]^{40 \cdot 50+22}=\left([3]^{40}\right)^{50}[3]^{22}=[3]^{22} \\
& =\left([3]^{5}\right)^{4}[3]^{2}=[243]^{4}[9]=[43]^{4}[9]=\left[(50-7)^{2}\right]^{2}[9] \\
& =\left[7^{2}\right]^{2}[9]=[49]^{2}[9]=\left[(50-1)^{2}\right][9]=\left[1^{2}\right][9]=[9] .
\end{aligned}
$$

Thus $3^{2022}=\ldots 09$.

