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Public key encryption.
Rings of polynomials.

Division of polynomials.



Public key encryption

Suppose that Alice wants to obtain some
confidential information from Bob, but they can

only communicate via a public channel (meaning all
that is sent may become available to third parties,
in particular, to Eve). How to organize secure

transfer of data in these circumstances?

The public key encryption is a solution to this

problem.



Public key encryption

The first step is coding. Bob digitizes the message and
breaks it into blocks b1, b2, . . . , bk so that each block can be
encoded by an element of a set X = {1, . . . ,K}, where K is
large. This results in a plaintext. Coding and decoding are
standard procedures known to public.

Next step is encryption. Alice sends a public key, which is
an invertible function f : X → Y , where Y is an equally large
set. Bob uses this function to produce an encrypted message
(ciphertext): f (b1), f (b2), . . . , f (bk). The ciphertext is then
sent to Alice.

The remaining steps are decryption and decoding. To
decrypt the encrypted message (and restore the plaintext),
Alice applies the inverse function f −1 to each block. Finally,
the plaintext is decoded to obtain the original message.



Trapdoor function
For a successful encryption, the function f has to be the
so-called trapdoor function, which means that f is easy to
compute while f −1 is hard to compute unless one knows
special information (“trapdoor”).

The usual approach is to have a family of functions fα : Xα→Xα

(where X ⊂ Xα) depending on a parameter α (or several
parameters). For any function in the family, the inverse also
belongs to the family. The parameter α is the trapdoor.

An additional step in exchange of information is key
generation. Alice generates a pair of keys, i.e., parameter
values, α and β such that the function fβ is the inverse of fα.
α is the public key, it is communicated to Bob (and anyone
else who wishes to send encrypted information to Alice).
β is the private key, only Alice knows it.

The encryption system is efficient if it is virtually impossible to
find β when one only knows α.



Modular arithmetic

Fermat’s Little Theorem If p is a prime number

then ap−1 ≡ 1mod p for any integer a that is not
a multiple of p.

Euler’s Theorem If n is a positive integer and

φ(n) is the number of integers between 1 and n

coprime with n, then aφ(n) ≡ 1mod n for any

integer a coprime with n.

Theorem Let n > 1 be an integer and

n = ps11 p
s2
2 . . . pskk be its prime factorization. Then

φ(n) = ps1−1
1 (p1 − 1)ps2−1

2 (p2 − 1) . . .psk−1
k (pk − 1).



RSA system

The RSA (Rivest-Shamir-Adleman) system is a public key
system based on the modular arithmetic.

X = {1, 2, . . . ,K}, where K is a large number (say, 2128).

The key is a pair of integers (n, α), base and exponent.
The domain of the function fn,α is Gn, the set of invertible
congruence classes modulo n, regarded as a subset of
{0, 1, 2, . . . , n − 1}. We need to pick n so that the numbers
1, 2, . . . ,K are all coprime with n.

The function is given by fn,α(a) = aαmod n.

Key generation: First we pick two distinct primes p and q

greater than K and let n = pq. Secondly, we pick an integer
α coprime with φ(n) = (p − 1)(q − 1). Thirdly, we compute
β, the inverse of α modulo φ(n).

Now the public key is (n, α) while the private key is (n, β).



By construction, αβ = 1 + φ(n)k, k ∈ Z. Then

fn,β(fn,α(a)) = [a]αβ
n

= [a]n([a]
φ(n)
n )k ,

which equals [a]n by Euler’s theorem. Thus fn,β = f −1
n,α .

Efficiency of the RSA system is based on impossibility of
efficient prime factorisation (at present time).

Example. Let us take p = 5, q = 23 so that the base is
n = pq = 115. Then φ(n) = (p − 1)(q − 1) = 4 · 22 = 88.

Exponent for the public key: α = 29. It is easy to observe
that −3 is the inverse of 29 modulo 88:

(−3) · 29 = −87 ≡ 1mod 88.

However the exponent is to be positive, so we take β = 85
(≡ −3mod 88).

Public key: (115, 29), private key: (115, 85).

Example of plaintext: 6/8 (two blocks).

Ciphertext: 26 (≡ 629mod 115), 58 (≡ 829mod 115).



Polynomials in one indeterminate

Definition. A polynomial in an indeterminate (or variable) X
over a ring R is an expression of the form

p(X ) = c0X
0 + c1X

1 + c2X
2 + · · ·+ cnX

n,

where c0, c1, . . . , cn are elements of the ring R (called
coefficients of the polynomial). The degree deg(p) of the
polynomial p(X ) is the largest integer k such that ck 6= 0.
The set of all such polynomials is denoted R[X ].

Remarks on notation. The polynomial is denoted p(X ) or p.
The terms c0X

0, c1X
1 and 1X k are usually written as c0,

c1X and X k . Zero terms 0X k are usually omitted. Also, the
terms may be rearranged, e.g., p(X ) = cnX

n+ cn−1X
n−1+ · · ·

· · ·+ c1X + c0. This does not change the polynomial.

Remark on formalism. Formally, a polynomial p(X ) is
determined by an infinite sequence (c0, c1, c2, . . . ) of elements
of R such that ck = 0 for k large enough.



Algebra of polynomials over a field

First consider polynomials over a field F. If

p(X ) = a0 + a1X + a2X
2 + · · ·+ anX

n,
q(X ) = b0 + b1X + b2X

2 + · · ·+ bmX
m,

then (p+q)(X ) = (a0+b0) + (a1+b1)X + · · ·+ (ad+bd)X
d ,

where d = max(n,m) and missing coefficients are assumed to
be zeros. Also, (λp)(X ) = (λa0) + (λa1)X + · · ·+ (λan)X

n

for all λ ∈ F. This makes F[X ] into a vector space over F,
with a basis X 0,X 1,X 2, . . . ,X n, . . .

Further, (pq)(X ) = c0 + c1X + c2X
2 + · · ·+ cn+mX

n+m,

where ck = a0bk + a1bk−1 + · · ·+ ak−1b1 + akb0, k ≥ 0.
Equivalently, the product pq is a bilinear function defined on
elements of the basis by X nXm = X n+m for all n,m ≥ 0.
Multiplication is associative, which follows from bilinearity and
the fact that (X nXm)X k = X n(XmX k) for all n,m, k ≥ 0.

Thus F[X ] is a commutative ring and an associative F-algebra.



Ring of polynomials

Now consider polynomials over an arbitrary ring R . If

p(X ) = a0 + a1X + a2X
2 + · · ·+ anX

n,
q(X ) = b0 + b1X + b2X

2 + · · ·+ bmX
m,

then (p+q)(X ) = (a0+b0) + (a1+b1)X + · · ·+ (ad+bd)X
d ,

where d = max(n,m) and missing coefficients are assumed to
be zeros. Also, (λp)(X )=(λa0)+(λa1)X+. . .+(λan)X

n for
all λ∈R . This makes R[X ] into a module over R . If 1∈R ,

the module has a basis X 0,X 1,X 2, . . . ,X n, . . . (a free module).

Further, (pq)(X ) = c0 + c1X + c2X
2 + · · ·+ cn+mX

n+m,

where ck = a0bk + a1bk−1 + · · ·+ ak−1b1 + akb0, k ≥ 0.
One can show that multiplication is associative and distributes
over addition. Now R[X ] is a ring of polynomials. If R is
commutative (a domain, a ring with unity), then so is R[X ].

Notice that deg(p ± q) ≤ max(deg(p), deg(q)). If p, q 6= 0
and R is a domain, then deg(pq) = deg(p) + deg(q).



Polynomials in several variables

The ring R[X ,Y ] of polynomials in two variables X
and Y over a ring R can be defined in several ways.

We can define it via “currying” as R[X ][Y ] (that is,
polynomials in Y over the ring R[X ]) or R[Y ][X ]
(that is, polynomials in X over the ring R[Y ]).

Also, we can define R[X ,Y ] directly as the set of
expressions of the form

c1X
n1Y m1 + c2X

n2Y m2 + · · ·+ ckX
nkY mk ,

where each ci ∈ R, each ni and mi is a nonnegative
integer, and the pairs (ni ,mi) are all distinct.

Similarly, we can define the ring R[X1,X2, . . . ,Xn]
of polynomials in n variables over R.



Division of polynomials

Let f (x), g(x) ∈ F[x ] be polynomials over a field F and
g 6= 0. We say that g(x) divides f (x) if f = qg for some
polynomial q(x) ∈ F[x ]. Then q is called the quotient of f
by g .

Let f (x) and g(x) be polynomials and deg(g) > 0. Suppose
that f = qg + r for some polynomials q and r such that
deg(r) < deg(g) or r = 0. Then r is the remainder and q is
the (partial) quotient of f by g .

Note that g(x) divides f (x) if the remainder is 0.

Theorem Let f (x) and g(x) be polynomials and
deg(g) > 0. Then the remainder and the quotient of f by g

are well defined. Moreover, they are unique.



Long division of polynomials

Problem. Divide x4 + 2x3 − 3x2 − 9x − 7 by x2 − 2x − 3.

x2 + 4x + 8

x2 − 2x − 3 | x4 + 2x3 − 3x2 − 9x − 7
x4 − 2x3 − 3x2

4x3 − 9x − 7
4x3 − 8x2 − 12x

8x2 + 3x − 7
8x2 − 16x − 24

19x + 17
We have obtained that

x4 + 2x3 − 3x2 − 9x − 7 = x2(x2 − 2x − 3) + 4x3 − 9x − 7,
4x3 − 9x − 7 = 4x(x2 − 2x − 3) + 8x2 + 3x − 7, and
8x2 + 3x − 7 = 8(x2 − 2x − 3) + 19x + 17. Therefore

x4+2x3−3x2−9x−7 = (x2+4x+8)(x2−2x−3)+19x+17.



Polynomial expression vs. polynomial function

Let us consider the polynomial ring F[X ] over a field F. By
definition, p(X ) = cnX

n + cn−1X
n−1 + · · ·+ c1X + c0 ∈ F[X ]

is just an expression. However we can evaluate it at any
α ∈ F to p(α) = cnα

n + cn−1α
n−1 + · · ·+ c1α + c0, which is

an element of F. Hence each polynomial p(X ) ∈ F[X ] gives
rise to a polynomial function p : F → F. One can check
that (p + q)(α) = p(α) + q(α) and (pq)(α) = p(α)q(α) for
all p(X ), q(X ) ∈ F[X ] and α ∈ F.

Theorem All polynomials in F[X ] are uniquely determined
by the induced polynomial functions if and only if F is infinite.

Idea of the proof: Suppose F is finite, F = {α1, α2, . . . , αk}.
Then a polynomial p(X ) = (X − α1)(X − α2) . . . (X − αk)
gives rise to the same function as the zero polynomial.

If F is infinite, then any polynomial of degree at most n is
uniquely determined by its values at n+1 distinct points of F.



Zeros of polynomials

Definition. An element α ∈ F is called a zero (or a root) of
a polynomial f ∈ F[x ] if f (α) = 0.

Theorem α ∈ F is a zero of f ∈ F[x ] if and only if the
polynomial f (x) is divisible by x − α.

Idea of the proof: The remainder after division of f (x) by
x − α is f (α).

Problem. Find the remainder after division of f (x) = x100

by g(x) = x2 + x − 2.

We have x100 = (x2 + x − 2)q(x) + r(x), where
r(x) = ax + b for some a, b ∈ R. The polynomial g has
zeros 1 and −2. Evaluating both sides at x = 1 and x = −2,
we obtain f (1) = r(1) and f (−2) = r(−2). This gives rise
to a system of linear equations a + b = 1, −2a + b = 2100.
Unique solution: a = (1− 2100)/3, b = (2100 + 2)/3.


