MATH 415
 Modern Algebra I

Lecture 18:
Public key encryption.
Rings of polynomials. Division of polynomials.

Public key encryption

Suppose that Alice wants to obtain some confidential information from Bob, but they can only communicate via a public channel (meaning all that is sent may become available to third parties, in particular, to Eve). How to organize secure transfer of data in these circumstances?

The public key encryption is a solution to this problem.

Public key encryption

The first step is coding. Bob digitizes the message and breaks it into blocks $b_{1}, b_{2}, \ldots, b_{k}$ so that each block can be encoded by an element of a set $X=\{1, \ldots, K\}$, where K is large. This results in a plaintext. Coding and decoding are standard procedures known to public.
Next step is encryption. Alice sends a public key, which is an invertible function $f: X \rightarrow Y$, where Y is an equally large set. Bob uses this function to produce an encrypted message (ciphertext): $f\left(b_{1}\right), f\left(b_{2}\right), \ldots, f\left(b_{k}\right)$. The ciphertext is then sent to Alice.
The remaining steps are decryption and decoding. To decrypt the encrypted message (and restore the plaintext), Alice applies the inverse function f^{-1} to each block. Finally, the plaintext is decoded to obtain the original message.

Trapdoor function

For a successful encryption, the function f has to be the so-called trapdoor function, which means that f is easy to compute while f^{-1} is hard to compute unless one knows special information ("trapdoor").
The usual approach is to have a family of functions $f_{\alpha}: X_{\alpha} \rightarrow X_{\alpha}$ (where $X \subset X_{\alpha}$) depending on a parameter α (or several parameters). For any function in the family, the inverse also belongs to the family. The parameter α is the trapdoor
An additional step in exchange of information is key generation. Alice generates a pair of keys, i.e., parameter values, α and β such that the function f_{β} is the inverse of f_{α}. α is the public key, it is communicated to Bob (and anyone else who wishes to send encrypted information to Alice). β is the private key, only Alice knows it.
The encryption system is efficient if it is virtually impossible to find β when one only knows α.

Modular arithmetic

Fermat's Little Theorem If p is a prime number then $a^{p-1} \equiv 1 \bmod p$ for any integer a that is not a multiple of p.

Euler's Theorem If n is a positive integer and $\phi(n)$ is the number of integers between 1 and n coprime with n, then $a^{\phi(n)} \equiv 1 \bmod n$ for any integer a coprime with n.

Theorem Let $n>1$ be an integer and $n=p_{1}^{S_{1}} p_{2}^{s_{2}} \ldots p_{k}^{s_{k}}$ be its prime factorization. Then $\phi(n)=p_{1}^{s_{1}-1}\left(p_{1}-1\right) p_{2}^{s_{2}-1}\left(p_{2}-1\right) \ldots p_{k}^{s_{k}-1}\left(p_{k}-1\right)$.

RSA system

The RSA (Rivest-Shamir-Adleman) system is a public key system based on the modular arithmetic.
$X=\{1,2, \ldots, K\}$, where K is a large number (say, 2^{128}).
The key is a pair of integers (n, α), base and exponent. The domain of the function $f_{n, \alpha}$ is G_{n}, the set of invertible congruence classes modulo n, regarded as a subset of $\{0,1,2, \ldots, n-1\}$. We need to pick n so that the numbers $1,2, \ldots, K$ are all coprime with n.
The function is given by $f_{n, \alpha}(a)=a^{\alpha} \bmod n$.
Key generation: First we pick two distinct primes p and q greater than K and let $n=p q$. Secondly, we pick an integer α coprime with $\phi(n)=(p-1)(q-1)$. Thirdly, we compute β, the inverse of α modulo $\phi(n)$.
Now the public key is (n, α) while the private key is (n, β).

By construction, $\alpha \beta=1+\phi(n) k, k \in \mathbb{Z}$. Then

$$
f_{n, \beta}\left(f_{n, \alpha}(a)\right)=[a]_{n}^{\alpha \beta}=[a]_{n}\left([a]_{n}^{\phi(n)}\right)^{k}
$$

which equals $[a]_{n}$ by Euler's theorem. Thus $f_{n, \beta}=f_{n, \alpha}^{-1}$.
Efficiency of the RSA system is based on impossibility of efficient prime factorisation (at present time).

Example. Let us take $p=5, q=23$ so that the base is $n=p q=115$. Then $\phi(n)=(p-1)(q-1)=4 \cdot 22=88$.
Exponent for the public key: $\alpha=29$. It is easy to observe that -3 is the inverse of 29 modulo 88 :

$$
(-3) \cdot 29=-87 \equiv 1 \bmod 88
$$

However the exponent is to be positive, so we take $\beta=85$ ($\equiv-3 \bmod 88$).
Public key: $(115,29)$, private key: $(115,85)$.
Example of plaintext: 6/8 (two blocks).
Ciphertext: $26\left(\equiv 6^{29} \bmod 115\right), 58\left(\equiv 8^{29} \bmod 115\right)$.

Polynomials in one indeterminate

Definition. A polynomial in an indeterminate (or variable) X over a ring R is an expression of the form

$$
p(X)=c_{0} X^{0}+c_{1} X^{1}+c_{2} X^{2}+\cdots+c_{n} X^{n},
$$

where $c_{0}, c_{1}, \ldots, c_{n}$ are elements of the ring R (called coefficients of the polynomial). The degree $\operatorname{deg}(p)$ of the polynomial $p(X)$ is the largest integer k such that $c_{k} \neq 0$. The set of all such polynomials is denoted $R[X]$.

Remarks on notation. The polynomial is denoted $p(X)$ or p. The terms $c_{0} X^{0}, c_{1} X^{1}$ and $1 X^{k}$ are usually written as c_{0}, $c_{1} X$ and X^{k}. Zero terms $0 X^{k}$ are usually omitted. Also, the terms may be rearranged, e.g., $p(X)=c_{n} X^{n}+c_{n-1} X^{n-1}+\cdots$ $\cdots+c_{1} X+c_{0}$. This does not change the polynomial.
Remark on formalism. Formally, a polynomial $p(X)$ is determined by an infinite sequence ($c_{0}, c_{1}, c_{2}, \ldots$) of elements of R such that $c_{k}=0$ for k large enough.

Algebra of polynomials over a field

First consider polynomials over a field \mathbb{F}. If

$$
\begin{gathered}
p(X)=a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{n} X^{n} \\
q(X)=b_{0}+b_{1} X+b_{2} X^{2}+\cdots+b_{m} X^{m}
\end{gathered}
$$

then $(p+q)(X)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) X+\cdots+\left(a_{d}+b_{d}\right) X^{d}$, where $d=\max (n, m)$ and missing coefficients are assumed to be zeros. Also, $(\lambda p)(X)=\left(\lambda a_{0}\right)+\left(\lambda a_{1}\right) X+\cdots+\left(\lambda a_{n}\right) X^{n}$ for all $\lambda \in \mathbb{F}$. This makes $\mathbb{F}[X]$ into a vector space over \mathbb{F}, with a basis $X^{0}, X^{1}, X^{2}, \ldots, X^{n}, \ldots$
Further, $(p q)(X)=c_{0}+c_{1} X+c_{2} X^{2}+\cdots+c_{n+m} X^{n+m}$, where $c_{k}=a_{0} b_{k}+a_{1} b_{k-1}+\cdots+a_{k-1} b_{1}+a_{k} b_{0}, \quad k \geq 0$. Equivalently, the product $p q$ is a bilinear function defined on elements of the basis by $X^{n} X^{m}=X^{n+m}$ for all $n, m \geq 0$. Multiplication is associative, which follows from bilinearity and the fact that $\left(X^{n} X^{m}\right) X^{k}=X^{n}\left(X^{m} X^{k}\right)$ for all $n, m, k \geq 0$.
Thus $\mathbb{F}[X]$ is a commutative ring and an associative \mathbb{F}-algebra.

Ring of polynomials

Now consider polynomials over an arbitrary ring R. If

$$
\begin{gathered}
p(X)=a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{n} X^{n} \\
q(X)=b_{0}+b_{1} X+b_{2} X^{2}+\cdots+b_{m} X^{m}
\end{gathered}
$$

then $(p+q)(X)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) X+\cdots+\left(a_{d}+b_{d}\right) X^{d}$, where $d=\max (n, m)$ and missing coefficients are assumed to be zeros. Also, $(\lambda p)(X)=\left(\lambda a_{0}\right)+\left(\lambda a_{1}\right) X+\ldots+\left(\lambda a_{n}\right) X^{n}$ for all $\lambda \in R$. This makes $R[X]$ into a module over R. If $1 \in R$, the module has a basis $X^{0}, X^{1}, X^{2}, \ldots, X^{n}, \ldots$ (a free module).
Further, $(p q)(X)=c_{0}+c_{1} X+c_{2} X^{2}+\cdots+c_{n+m} X^{n+m}$, where $c_{k}=a_{0} b_{k}+a_{1} b_{k-1}+\cdots+a_{k-1} b_{1}+a_{k} b_{0}, \quad k \geq 0$.
One can show that multiplication is associative and distributes over addition. Now $R[X]$ is a ring of polynomials. If R is commutative (a domain, a ring with unity), then so is $R[X]$.
Notice that $\operatorname{deg}(p \pm q) \leq \max (\operatorname{deg}(p), \operatorname{deg}(q))$. If $p, q \neq 0$ and R is a domain, then $\operatorname{deg}(p q)=\operatorname{deg}(p)+\operatorname{deg}(q)$.

Polynomials in several variables

The ring $R[X, Y]$ of polynomials in two variables X and Y over a ring R can be defined in several ways. We can define it via "currying" as $R[X][Y]$ (that is, polynomials in Y over the ring $R[X]$) or $R[Y][X]$ (that is, polynomials in X over the ring $R[Y]$). Also, we can define $R[X, Y]$ directly as the set of expressions of the form

$$
c_{1} X^{n_{1}} Y^{m_{1}}+c_{2} X^{n_{2}} Y^{m_{2}}+\cdots+c_{k} X^{n_{k}} Y^{m_{k}}
$$

where each $c_{i} \in R$, each n_{i} and m_{i} is a nonnegative integer, and the pairs $\left(n_{i}, m_{i}\right)$ are all distinct.
Similarly, we can define the ring $R\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ of polynomials in n variables over R.

Division of polynomials

Let $f(x), g(x) \in \mathbb{F}[x]$ be polynomials over a field \mathbb{F} and $g \neq 0$. We say that $g(x)$ divides $f(x)$ if $f=q g$ for some polynomial $q(x) \in \mathbb{F}[x]$. Then q is called the quotient of f by g.

Let $f(x)$ and $g(x)$ be polynomials and $\operatorname{deg}(g)>0$. Suppose that $f=q g+r$ for some polynomials q and r such that $\operatorname{deg}(r)<\operatorname{deg}(g)$ or $r=0$. Then r is the remainder and q is the (partial) quotient of f by g.
Note that $g(x)$ divides $f(x)$ if the remainder is 0 .
Theorem Let $f(x)$ and $g(x)$ be polynomials and $\operatorname{deg}(g)>0$. Then the remainder and the quotient of f by g are well defined. Moreover, they are unique.

Long division of polynomials

Problem. Divide $x^{4}+2 x^{3}-3 x^{2}-9 x-7$ by $x^{2}-2 x-3$.

$$
\begin{aligned}
& x^{2}-2 x-3 \left\lvert\, \frac{x^{2}+4 x+8}{x^{4}+2 x^{3}-3 x^{2}-9 x-7}\right. \\
& x^{4}-2 x^{3}-3 x^{2} \\
& \begin{array}{r}
4 x^{3}-9 x-7 \\
4 x^{3}-8 x^{2}-12 x-7
\end{array} \\
& \frac{8 x^{2}-16 x-24}{19 x+17}
\end{aligned}
$$

We have obtained that
$x^{4}+2 x^{3}-3 x^{2}-9 x-7=x^{2}\left(x^{2}-2 x-3\right)+4 x^{3}-9 x-7$,
$4 x^{3}-9 x-7=4 x\left(x^{2}-2 x-3\right)+8 x^{2}+3 x-7$, and
$8 x^{2}+3 x-7=8\left(x^{2}-2 x-3\right)+19 x+17$. Therefore
$x^{4}+2 x^{3}-3 x^{2}-9 x-7=\left(x^{2}+4 x+8\right)\left(x^{2}-2 x-3\right)+19 x+17$.

Polynomial expression vs. polynomial function

Let us consider the polynomial ring $\mathbb{F}[X]$ over a field \mathbb{F}. By definition, $p(X)=c_{n} X^{n}+c_{n-1} X^{n-1}+\cdots+c_{1} X+c_{0} \in \mathbb{F}[X]$ is just an expression. However we can evaluate it at any $\alpha \in \mathbb{F}$ to $p(\alpha)=c_{n} \alpha^{n}+c_{n-1} \alpha^{n-1}+\cdots+c_{1} \alpha+c_{0}$, which is an element of \mathbb{F}. Hence each polynomial $p(X) \in \mathbb{F}[X]$ gives rise to a polynomial function $p: \mathbb{F} \rightarrow \mathbb{F}$. One can check that $(p+q)(\alpha)=p(\alpha)+q(\alpha)$ and $(p q)(\alpha)=p(\alpha) q(\alpha)$ for all $p(X), q(X) \in \mathbb{F}[X]$ and $\alpha \in \mathbb{F}$.

Theorem All polynomials in $\mathbb{F}[X]$ are uniquely determined by the induced polynomial functions if and only if \mathbb{F} is infinite. Idea of the proof: Suppose \mathbb{F} is finite, $\mathbb{F}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$. Then a polynomial $p(X)=\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right) \ldots\left(X-\alpha_{k}\right)$ gives rise to the same function as the zero polynomial. If \mathbb{F} is infinite, then any polynomial of degree at most n is uniquely determined by its values at $n+1$ distinct points of \mathbb{F}.

Zeros of polynomials

Definition. An element $\alpha \in \mathbb{F}$ is called a zero (or a root) of a polynomial $f \in \mathbb{F}[x]$ if $f(\alpha)=0$.

Theorem $\alpha \in \mathbb{F}$ is a zero of $f \in \mathbb{F}[x]$ if and only if the polynomial $f(x)$ is divisible by $x-\alpha$.
Idea of the proof: The remainder after division of $f(x)$ by $x-\alpha$ is $f(\alpha)$.

Problem. Find the remainder after division of $f(x)=x^{100}$ by $g(x)=x^{2}+x-2$.
We have $x^{100}=\left(x^{2}+x-2\right) q(x)+r(x)$, where $r(x)=a x+b$ for some $a, b \in \mathbb{R}$. The polynomial g has zeros 1 and -2 . Evaluating both sides at $x=1$ and $x=-2$, we obtain $f(1)=r(1)$ and $f(-2)=r(-2)$. This gives rise to a system of linear equations $a+b=1,-2 a+b=2^{100}$. Unique solution: $a=\left(1-2^{100}\right) / 3, b=\left(2^{100}+2\right) / 3$.

