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Lecture 19:
Factorization of polynomials.



Zeros of polynomials

Definition. An element α ∈ R of a ring R is called a zero (or
root) of a polynomial f ∈ R[x ] if f (α) = 0.

Theorem Let F be a field. Then α ∈ F is a zero of f ∈ F[x ]
if and only if the polynomial f (x) is divisible by x − α.

Proof: We have f (x) = (x − α)q(x) + r(x), where q is the
quotient and r is the remainder when f is divided by x − α.
Note that r has only the constant term. Evaluating both
sides of the above equality at x = α, we obtain f (α) = r(α).
Thus r = 0 if and only if α is a zero of f .

Corollary A polynomial f ∈ F[x ] has distinct elements
α1, α2, . . . , αk ∈ F as zeros if and only if it is divisible by
(x − α1)(x − α2) . . . (x − αk).



Theorem Let

f (x) = cnx
n + cn−1x

n−1 + · · · + c1x + c0 be a
polynomial with integer coefficients and cn, c0 6= 0.
Assume that f has a rational root α = p/q, where

the fraction is in lowest terms. Then p divides c0
and q divides cn.

Corollary If cn = 1 then any rational root of the
polynomial f is, in fact, an integer.



Example. f (x) = x3 + 6x2 + 11x + 6.

Since all coefficients are integers and the leading coefficient is
1, all rational roots of f (if any) are integers. Moreover, the
only possible integer roots of f are divisors of the constant
term: ±1, ±2, ±3, ±6. Notice that there are no positive
roots as all coefficients are positive. We obtain that
f (−1) = 0, f (−2) = 0, and f (−3) = 0. First we divide f (x)
by x + 1:

x3 + 6x2 + 11x + 6 = (x + 1)(x2 + 5x + 6).

Then we divide x2 + 5x + 6 by x + 2:

x2 + 5x + 6 = (x + 2)(x + 3).

Thus f (x) = (x + 1)(x + 2)(x + 3).



Factorization of polynomials over a field

Definition. A non-constant polynomial f ∈ F[x ]
over a field F is said to be irreducible over F if it

cannot be written as f = gh, where g , h ∈ F[x ],
and deg(g), deg(h) < deg(f ).

Irreducible polynomials are for multiplication of

polynomials what prime numbers are for
multiplication of integers.

Theorem Any polynomial f ∈ F[x ] of positive

degree admits a factorization f = p1p2 . . . pk into
irreducible factors over F. This factorization is

unique up to rearranging the factors and multiplying
them by non-zero scalars.



Some facts and examples

• Any polynomial of degree 1 is irreducible.

• A polynomial p(x) ∈ F[x ] is divisible by a
polynomial of degree 1 if and only if it has a root.

Indeed, if p(α) = 0 for some α ∈ F, then p(x) is divisible by
x − α. Conversely, if p(x) is divisible by ax + b for some
a, b ∈ F, a 6= 0, then p has a root −b/a.

• A polynomial of degree 2 or 3 is irreducible if
and only if it has no roots.

If such a polynomial splits into a product of two non-constant
polynomials, then at least one of the factors is of degree 1.

• Polynomial p(x) = (x2 + 1)2 has no real roots,
yet it is not irreducible over R.



• Polynomial p(x) = x3 + x2 − 5x + 2 is
irreducible over Q.

We only need to check that p(x) has no rational roots. Since
all coefficients are integers and the leading coefficient is 1,
possible rational roots are integer divisors of the constant
term: ±1 and ±2. We check that p(1) = −1, p(−1) = 7,
p(2) = 4 and p(−2) = 8.

• If a polynomial p(x) ∈ R[x ] is irreducible over

R, then deg(p) = 1 or 2.

Assume deg(p) > 1. Then p has a complex root α = a + bi

that is not real: b 6= 0. Complex conjugacy r + si = r − si

commutes with arithmetic operations and preserves real
numbers. Therefore p(α) = p(α) = 0 so that α is another
root of p. It follows that p(x) is divisible by (x − α)(x − α)
= x2 − (α+ α)x + αα = x2 − 2ax + a2 + b2, which is a real
polynomial. Then p(x) must be a scalar multiple of it.



Factorization over C and R

Clearly, any polynomial f ∈ F[x ] of degree 1 is irreducible
over F. Depending on the field F, there might exist other
irreducible polynomials as well.

Fundamental Theorem of Algebra Any non-constant
polynomial over the field C has a root.

Corollary 1 The only irreducible polynomials over the field C

of complex numbers are linear polynomials. Equivalently, any
polynomial f ∈ C[x ] of a positive degree n can be factorized
as f (x) = c(x − α1)(x − α2) . . . (x − αn), where
c, α1, . . . , αn ∈ C and c 6= 0.

Corollary 2 The only irreducible polynomials over the field R

of real numbers are linear polynomials and quadratic
polynomials without real roots.



Factorization of polynomials over a field

Theorem Any polynomial f ∈ F[x ] of positive degree admits
a factorization f = p1p2 . . . pk into irreducible factors over F.
This factorization is unique up to rearranging the factors and
multiplying them by non-zero scalars.

Ideas of the proof: The existence is proved by strong
induction on deg(f ). It is based on a simple fact: if
p1p2 . . . ps is an irreducible factorization of g and q1q2 . . . qt
is an irreducible factorization of h, then p1p2 . . . psq1q2 . . . qt
is an irreducible factorization of gh.

The uniqueness is proved by (normal) induction on the
number of irreducible factors. It is based on a (not so simple)
fact: if an irreducible polynomial p divides a product of
irreducible polynomials q1q2 . . . qt then one of the factors
q1, . . . , qt is a scalar multiple of p.



Greatest common divisor

Definition. Given non-zero polynomials f , g ∈ F[x ],
a greatest common divisor gcd(f , g) is a
polynomial over the field F such that (i) gcd(f , g)

divides f and g , and (ii) if any p ∈ F[x ] divides
both f and g , then it divides gcd(f , g) as well.

Theorem The polynomial gcd(f , g) exists and is
unique up to a scalar multiple. Moreover, it is a

non-zero polynomial of the least degree that can be
represented as uf + vg , where u, v ∈ F[x ].



Theorem The polynomial gcd(f , g) exists and is unique up
to a scalar multiple. Moreover, it is a non-zero polynomial of
the least degree that can be represented as uf + vg , where
u, v ∈ F[x ].

Proof: Let S denote the set of all polynomials of the form
uf + vg , where u, v ∈ F[x ]. The set S contains non-zero
polynomials, say, f and g . Let d(x) be any such polynomial
of the least possible degree. It is easy to show that the
remainder under division of any polynomial h ∈ S by d

belongs to S as well. By the choice of d , that remainder must
be zero. Hence d divides every polynomial in S . In
particular, d is a common divisor of f and g . Further, if any
p(x) ∈ F[x ] divides both f and g , then it also divides every
element of S . In particular, it divides d . Thus d = gcd(f , g).

Now assume d1 is another greatest common divisor of f and
g . By definition, d1 divides d and d divides d1. This is only
possible if d and d1 are scalar multiples of each other.



Uniqueness of factorization

Proposition Let f be an irreducible polynomial and suppose
that f divides a product f1f2. Then f divides at least one of
the polynomials f1 and f2.

Proof. Since f is irreducible, it follows that gcd(f , f1) = f or
1. In the former case, f1 is divisible by f . In the latter case,
we have uf + vf1 = 1 for some polynomials u and v . Then
f2 = f2(uf + vf1) = (f2u)f + v (f1f2), which is divisible by f .

Corollary 1 Let f be an irreducible polynomial and suppose
that f divides a product of polynomials f1f2 . . . fr . Then f

divides at least one of the factors f1, f2, . . . , fr .

Corollary 2 Let f be an irreducible polynomial that divides a
product f1f2 . . . fr of other irreducible polynomials. Then one
of the factors f1, f2, . . . , fr is a scalar multiple of f .



Examples of factorization

• f (x) = x4 − 1 over R.

f (x) = (x2 − 1)(x2 + 1) = (x − 1)(x + 1)(x2 + 1).
The polynomial x2 + 1 is irreducible over R.

• f (x) = x4 − 1 over C.

f (x) = (x2 − 1)(x2 + 1) = (x − 1)(x + 1)(x2 + 1)
= (x − 1)(x + 1)(x − i)(x + i).

• f (x) = x4 − 1 over Z5.

It follows from Fermat’s Little Theorem that any non-zero
element of the field Z5 is a root of the polynomial f . Hence f

has 4 distinct roots. By the Unique Factorization Theorem,

f (x) = (x − 1)(x − 2)(x − 3)(x − 4)
= (x − 1)(x + 1)(x − 2)(x + 2).



• f (x) = x4 − 1 over Z7.

Note that the polynomial x4 − 1 can be considered over any
field. Moreover, the expansion x4 − 1 = (x2 − 1)(x2 + 1)
= (x − 1)(x + 1)(x2 + 1) holds over any field. It depends on
the field whether the polynomial g(x) = x2 + 1 is irreducible.
Over the field Z7, we have g(0) = 1, g(±1) = 2, g(±2) = 5
and g(±3) = 10 = 3. Hence g has no roots. For
polynomials of degree 2 or 3, this implies irreducibility.

• f (x) = x4 − 1 over Z17.

The polynomial x2 + 1 has roots ±4. It follows that
f (x) = (x − 1)(x +1)(x2 +1) = (x − 1)(x +1)(x − 4)(x + 4).

• f (x) = x4 − 1 over Z2.

For this field, we have 1 + 1 = 0 so that −1 = 1. Hence
x4 − 1 = (x2 − 1)(x2 + 1) = (x2 − 1)2 = (x − 1)2(x + 1)2

= (x − 1)4.


