MATH 415
 Modern Algebra I

Lecture 19:
 Factorization of polynomials.

Zeros of polynomials

Definition. An element $\alpha \in R$ of a ring R is called a zero (or root) of a polynomial $f \in R[x]$ if $f(\alpha)=0$.

Theorem Let \mathbb{F} be a field. Then $\alpha \in \mathbb{F}$ is a zero of $f \in \mathbb{F}[x]$ if and only if the polynomial $f(x)$ is divisible by $x-\alpha$.
Proof: We have $f(x)=(x-\alpha) q(x)+r(x)$, where q is the quotient and r is the remainder when f is divided by $x-\alpha$. Note that r has only the constant term. Evaluating both sides of the above equality at $x=\alpha$, we obtain $f(\alpha)=r(\alpha)$. Thus $r=0$ if and only if α is a zero of f.

Corollary A polynomial $f \in \mathbb{F}[x]$ has distinct elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{F}$ as zeros if and only if it is divisible by $\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{k}\right)$.

Theorem Let
$f(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}$ be a polynomial with integer coefficients and $c_{n}, c_{0} \neq 0$. Assume that f has a rational root $\alpha=p / q$, where the fraction is in lowest terms. Then p divides c_{0} and q divides c_{n}.

Corollary If $c_{n}=1$ then any rational root of the polynomial f is, in fact, an integer.

Example. $f(x)=x^{3}+6 x^{2}+11 x+6$.
Since all coefficients are integers and the leading coefficient is 1 , all rational roots of f (if any) are integers. Moreover, the only possible integer roots of f are divisors of the constant term: $\pm 1, \pm 2, \pm 3, \pm 6$. Notice that there are no positive roots as all coefficients are positive. We obtain that $f(-1)=0, f(-2)=0$, and $f(-3)=0$. First we divide $f(x)$ by $x+1$:

$$
x^{3}+6 x^{2}+11 x+6=(x+1)\left(x^{2}+5 x+6\right)
$$

Then we divide $x^{2}+5 x+6$ by $x+2$:

$$
x^{2}+5 x+6=(x+2)(x+3) .
$$

Thus $f(x)=(x+1)(x+2)(x+3)$.

Factorization of polynomials over a field

Definition. A non-constant polynomial $f \in \mathbb{F}[x]$ over a field \mathbb{F} is said to be irreducible over \mathbb{F} if it cannot be written as $f=g h$, where $g, h \in \mathbb{F}[x]$, and $\operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f)$.

Irreducible polynomials are for multiplication of polynomials what prime numbers are for multiplication of integers.

Theorem Any polynomial $f \in \mathbb{F}[x]$ of positive degree admits a factorization $f=p_{1} p_{2} \ldots p_{k}$ into irreducible factors over \mathbb{F}. This factorization is unique up to rearranging the factors and multiplying them by non-zero scalars.

Some facts and examples

- Any polynomial of degree 1 is irreducible.
- A polynomial $p(x) \in \mathbb{F}[x]$ is divisible by a polynomial of degree 1 if and only if it has a root. Indeed, if $p(\alpha)=0$ for some $\alpha \in \mathbb{F}$, then $p(x)$ is divisible by $x-\alpha$. Conversely, if $p(x)$ is divisible by $a x+b$ for some $a, b \in \mathbb{F}, a \neq 0$, then p has a root $-b / a$.
- A polynomial of degree 2 or 3 is irreducible if and only if it has no roots.
If such a polynomial splits into a product of two non-constant polynomials, then at least one of the factors is of degree 1 .
- Polynomial $p(x)=\left(x^{2}+1\right)^{2}$ has no real roots, yet it is not irreducible over \mathbb{R}.
- Polynomial $p(x)=x^{3}+x^{2}-5 x+2$ is irreducible over \mathbb{Q}.
We only need to check that $p(x)$ has no rational roots. Since all coefficients are integers and the leading coefficient is 1 , possible rational roots are integer divisors of the constant term: ± 1 and ± 2. We check that $p(1)=-1, p(-1)=7$, $p(2)=4$ and $p(-2)=8$.
- If a polynomial $p(x) \in \mathbb{R}[x]$ is irreducible over \mathbb{R}, then $\operatorname{deg}(p)=1$ or 2 .
Assume $\operatorname{deg}(p)>1$. Then p has a complex root $\alpha=a+b i$ that is not real: $b \neq 0$. Complex conjugacy $\overline{r+s i}=r-s i$ commutes with arithmetic operations and preserves real numbers. Therefore $p(\bar{\alpha})=\overline{p(\alpha)}=0$ so that $\bar{\alpha}$ is another root of p. It follows that $p(x)$ is divisible by $(x-\alpha)(x-\bar{\alpha})$ $=x^{2}-(\alpha+\bar{\alpha}) x+\alpha \bar{\alpha}=x^{2}-2 a x+a^{2}+b^{2}$, which is a real polynomial. Then $p(x)$ must be a scalar multiple of it.

Factorization over \mathbb{C} and \mathbb{R}

Clearly, any polynomial $f \in \mathbb{F}[x]$ of degree 1 is irreducible over \mathbb{F}. Depending on the field \mathbb{F}, there might exist other irreducible polynomials as well.

Fundamental Theorem of Algebra Any non-constant polynomial over the field \mathbb{C} has a root.

Corollary 1 The only irreducible polynomials over the field \mathbb{C} of complex numbers are linear polynomials. Equivalently, any polynomial $f \in \mathbb{C}[x]$ of a positive degree n can be factorized as $f(x)=c\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right)$, where $c, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ and $c \neq 0$.

Corollary 2 The only irreducible polynomials over the field \mathbb{R} of real numbers are linear polynomials and quadratic polynomials without real roots.

Factorization of polynomials over a field

Theorem Any polynomial $f \in \mathbb{F}[x]$ of positive degree admits a factorization $f=p_{1} p_{2} \ldots p_{k}$ into irreducible factors over \mathbb{F}. This factorization is unique up to rearranging the factors and multiplying them by non-zero scalars.

Ideas of the proof: The existence is proved by strong induction on $\operatorname{deg}(f)$. It is based on a simple fact: if $p_{1} p_{2} \ldots p_{s}$ is an irreducible factorization of g and $q_{1} q_{2} \ldots q_{t}$ is an irreducible factorization of h, then $p_{1} p_{2} \ldots p_{s} q_{1} q_{2} \ldots q_{t}$ is an irreducible factorization of gh .

The uniqueness is proved by (normal) induction on the number of irreducible factors. It is based on a (not so simple) fact: if an irreducible polynomial p divides a product of irreducible polynomials $q_{1} q_{2} \ldots q_{t}$ then one of the factors q_{1}, \ldots, q_{t} is a scalar multiple of p.

Greatest common divisor

Definition. Given non-zero polynomials $f, g \in \mathbb{F}[x]$, a greatest common divisor $\operatorname{gcd}(f, g)$ is a polynomial over the field \mathbb{F} such that (i) $\operatorname{gcd}(f, g)$ divides f and g, and (ii) if any $p \in \mathbb{F}[x]$ divides both f and g, then it divides $\operatorname{gcd}(f, g)$ as well.

Theorem The polynomial $\operatorname{gcd}(f, g)$ exists and is unique up to a scalar multiple. Moreover, it is a non-zero polynomial of the least degree that can be represented as $u f+v g$, where $u, v \in \mathbb{F}[x]$.

Theorem The polynomial $\operatorname{gcd}(f, g)$ exists and is unique up to a scalar multiple. Moreover, it is a non-zero polynomial of the least degree that can be represented as $u f+v g$, where $u, v \in \mathbb{F}[x]$.

Proof: Let S denote the set of all polynomials of the form $u f+v g$, where $u, v \in \mathbb{F}[x]$. The set S contains non-zero polynomials, say, f and g. Let $d(x)$ be any such polynomial of the least possible degree. It is easy to show that the remainder under division of any polynomial $h \in S$ by d belongs to S as well. By the choice of d, that remainder must be zero. Hence d divides every polynomial in S. In particular, d is a common divisor of f and g. Further, if any $p(x) \in \mathbb{F}[x]$ divides both f and g, then it also divides every element of S. In particular, it divides d. Thus $d=\operatorname{gcd}(f, g)$.
Now assume d_{1} is another greatest common divisor of f and g. By definition, d_{1} divides d and d divides d_{1}. This is only possible if d and d_{1} are scalar multiples of each other.

Uniqueness of factorization

Proposition Let f be an irreducible polynomial and suppose that f divides a product $f_{1} f_{2}$. Then f divides at least one of the polynomials f_{1} and f_{2}.

Proof. Since f is irreducible, it follows that $\operatorname{gcd}\left(f, f_{1}\right)=f$ or 1. In the former case, f_{1} is divisible by f. In the latter case, we have $u f+v f_{1}=1$ for some polynomials u and v. Then $f_{2}=f_{2}\left(u f+v f_{1}\right)=\left(f_{2} u\right) f+v\left(f_{1} f_{2}\right)$, which is divisible by f.

Corollary 1 Let f be an irreducible polynomial and suppose that f divides a product of polynomials $f_{1} f_{2} \ldots f_{r}$. Then f divides at least one of the factors $f_{1}, f_{2}, \ldots, f_{r}$.

Corollary 2 Let f be an irreducible polynomial that divides a product $f_{1} f_{2} \ldots f_{r}$ of other irreducible polynomials. Then one of the factors $f_{1}, f_{2}, \ldots, f_{r}$ is a scalar multiple of f.

Examples of factorization

- $f(x)=x^{4}-1$ over \mathbb{R}.
$f(x)=\left(x^{2}-1\right)\left(x^{2}+1\right)=(x-1)(x+1)\left(x^{2}+1\right)$.
The polynomial $x^{2}+1$ is irreducible over \mathbb{R}.
- $f(x)=x^{4}-1$ over \mathbb{C}.
$f(x)=\left(x^{2}-1\right)\left(x^{2}+1\right)=(x-1)(x+1)\left(x^{2}+1\right)$
$=(x-1)(x+1)(x-i)(x+i)$.
- $f(x)=x^{4}-1$ over \mathbb{Z}_{5}.

It follows from Fermat's Little Theorem that any non-zero element of the field \mathbb{Z}_{5} is a root of the polynomial f. Hence f has 4 distinct roots. By the Unique Factorization Theorem,

$$
\begin{aligned}
f(x) & =(x-1)(x-2)(x-3)(x-4) \\
& =(x-1)(x+1)(x-2)(x+2) .
\end{aligned}
$$

- $f(x)=x^{4}-1$ over \mathbb{Z}_{7}.

Note that the polynomial $x^{4}-1$ can be considered over any field. Moreover, the expansion $x^{4}-1=\left(x^{2}-1\right)\left(x^{2}+1\right)$ $=(x-1)(x+1)\left(x^{2}+1\right)$ holds over any field. It depends on the field whether the polynomial $g(x)=x^{2}+1$ is irreducible. Over the field \mathbb{Z}_{7}, we have $g(0)=1, g(\pm 1)=2, g(\pm 2)=5$ and $g(\pm 3)=10=3$. Hence g has no roots. For polynomials of degree 2 or 3 , this implies irreducibility.

- $f(x)=x^{4}-1$ over \mathbb{Z}_{17}.

The polynomial $x^{2}+1$ has roots ± 4. It follows that $f(x)=(x-1)(x+1)\left(x^{2}+1\right)=(x-1)(x+1)(x-4)(x+4)$.

- $f(x)=x^{4}-1$ over \mathbb{Z}_{2}.

For this field, we have $1+1=0$ so that $-1=1$. Hence $x^{4}-1=\left(x^{2}-1\right)\left(x^{2}+1\right)=\left(x^{2}-1\right)^{2}=(x-1)^{2}(x+1)^{2}$ $=(x-1)^{4}$.

