MATH 415
Modern Algebra |

Lecture 20:
Review for Exam 2.



Topics for Exam 2

Basic theory of rings and fields:

Rings and fields
Integral domains
Modular arithmetic
Rings of polynomials

Factorization of polynomials

Fraleigh/Brand: Sections 22-28



Sample problems

Problem 1. Let M be the set of all 2x2 matrices of the

form <g ﬁ) where n and k are rational numbers. Under

the operations of matrix addition and multiplication, does this
set form a ring? Does M form a field?

Problem 2. Let L be the set of the following 2x2 matrices
with entries from the field Z,:

_ ([0 0] _ (0] 0]
A= (bl o) &= (ol )
_ (][] _ (o] [1]
= (b ) o= (i i)
Under the operations of matrix addition and multiplication,
does this set form a ring? Does L form a field?



Sample problems

Problem 3. Prove that for a ring with unity,
commutativity of addition follows from the other
axioms.

Problem 4. Find a direct product of cyclic groups
that is isomorphic to Gig (multiplicative group of all
invertible elements of the ring Z1¢).

Problem 5. Determine the last two digits of
30339,

Problem 6. Find all integer solutions of the
equation 21x — 32y = 4.



Sample problems

Problem 7. Find all integer solutions of the
equation 2x + 3y +5z =7.

Problem 8. Solve the equation
2x100 1 x™ 4+ x29 = 0 over the field Z1;.

Problem 9. Factor a polynomial
p(x) = x3 — 3x% + 3x — 2 into irreducible factors
over the field Z;.

Problem 10. Factor a polynomial
p(x) = x* + x3 — 2x% + 3x — 1 into irreducible
factors over the field Q.



Problem 1. Let M be the set of all 2x2 matrices of the

0
the operations of matrix addition and multiplication, does this
set form a ring? Does M form a field?

form <n i) where n and k are rational numbers. Under

The set M is closed under matrix addition, taking the negative,
and matrix multiplication as

n k N n k' _(n+n k+K

0 n 0 n) 0 n+n' )’
AL k\ _ (—-n —k

0 n) 0 —n)/’

n k n k'\ _ (nn" nk+kn

0 n 0 ) \ 0 nn' '

Also, the multiplication is commutative on M. The associativity
and commutativity of the addition, the associativity of the
multiplication, and the distributive law hold on M since they hold
for all 2x2 matrices. Thus M is a commutative ring.



Problem 1. Let M be the set of all 2x2 matrices of the

0
the operations of matrix addition and multiplication, does this
set form a ring? Does M form a field?

k )
form <n 0 where n and k are rational numbers. Under

The ring M is not a field since it has zero-divisors
(and zero-divisors do not admit multiplicative inverses).

For example, the matrix (8 é) € M is a divisor of zero as

(00 (5 0)=(06)



Problem 2. Let L be the set of the following 2x2 matrices with
entries from the field Zs:
[0] [0]> ([1] [0]> ([1] [1]> ([0] [1]>
A= , B= , C= , D= .
([0] [0] [0] 1] (1] 0] (1] (1]
Under the operations of matrix addition and multiplication, does
this set form a ring? Does L form a field?

First we build the addition and multiplication tables for L
(meanwhile checking that L is closed under both operations):

+|A[B]C|D] x|A[B|C|D]
A[A|B|C|D AJA[A]A]A
B|[B|[A|D]|C B|A[B|C|D
C|IC|D|A|B ClA[C[D|B
D|D|C|[B|A D|A|D|B]|C

Analyzing these tables, we find that both operations are
commutative on L, A is the additive identity element, and B is the
multiplicative identity element. Also, B~ =B, C71 =

D! =C, and —X = X for all X € L. The associativity of
addition and multiplication as well as the distributive law hold on L
since they hold for all 2x2 matrices. Thus L is a field.



Problem 3. Prove that for a ring with unity, commutativity
of addition follows from the other axioms.

Suppose R is a set with two operations, addition and
multiplication, that satisfies all axioms of a ring with unity
except, possibly, commutativity of addition. We need to show
that addition is commutative anyway: x +y =y + x for all
x,y € R. Let us simplify (1+1)(x+y) in two different ways:

A+ D +y)=1x+y) +1x+y) = (x+y)+(x+y)
1+D(x+y)=1+x+(1+1)y
=(Ix+1x)+ (ly +1y) = (x +x) + (y +y)-
Hence (x+y)+ (x+y) = (x+x)+ (y+y). It follows that
(=) +(x+y)+(x+y)+(=y) = (=x)+(x+x)+(y+y)+(=y),
(=x4+x)+(y+x)+(y+(=y)) = (=x+x)+(x+y)+(y+(=y)),
0+(y+x)+0=0+(x+y)+0 = y+x=x+y.

Remark. The same argument proves that for a vector space,
commutativity of vector addition follows from the other axioms.



Problem 4. Find a direct product of cyclic groups
that is isomorphic to Gig (multiplicative group of all
invertible elements of the ring Z1¢).

A congruence class [a]y6 is invertible in Zy if and only if a is
coprime with 16, that is, if a is odd. There are 8 congruence
classes in Gyg: [1], [3], [5], [7], [9], [11], [13], [15].

Classification of finite abelian groups implies that Gig is
isomorphic to Zg, Z4 X Zo or Zy X Lo X Zo. These three
groups are distinguished by orders of their elements: Zg has
elements of order 1, 2, 4 and 8; Z, X Z;, has elements of order
1, 2 and 4; Z, X 7o X Zo has only elements of order 1 and 2.



Let us find orders for all elements of Gyg.

[1] has order 1.

[312 = [9], [3]* =[9]®> = [81] = [1], hence [3] has
order 4.

[5]2 = [25] = [9], [5]* = [9]2 = [1], hence [5] has
order 4.

[7]? = [49] = [1], hence [7] has order 2.

[9]2 = [1], hence [9] has order 2.

[11]?> = [-5]2 = [5]2 = [9], hence [11] has order 4.
[13]2 = [-3]2 = [9], hence [13] has order 4.

[15]2 = [~1]2 = [1], hence [15] has order 2.

We conclude that Gig = Z4 X Zo.



Problem 5. Determine the last two digits of 3033%.

The last two digits form the remainder under division by 100.
We know that ¢(100) = 40. It follows from Euler's Theorem
that 3% = 1mod 100. Then

[303303] _ [303]303 [3]303 [3]40 T4+23 __ ([3]40) [3]23 [3]23.

We have [3]* = [9], [3]° = [9][3] = [27], [3]* = [27][3] = [81],
[3]°> = [81][3] = [43], [3]° = [43][3] = [29],

[3]" = [29][3] = [87], [3]° = [87][3] = [61],

[3]° = [61][3] = [83], [3]"° = [83][3] = [49],

[3]'! = [49][3] = [47], [3]"* = [47][3] = [41],

[3]** = [41][3] = [23], [3]"* = [23][3] = [69],

[3]*° = [69][3] = [7], [3]*° = [7][3] = [21],

[3]'" = [21][3] = [63], [3]'° = [63][3] = [89],

[3]* = [89][3] = [67], [3]*° = [67][3] = [1],

Finally, [3]?% = [3]® = [27] so that 303%% =...27.

Remark. 1t turns out that Gygg = Zog X Zy. Therefore the
order of each element of the group Gigg is a divisor of 20.



Problem 5. Determine the last two digits of
30339,

Alternative solution: The last two digits form the remainder
under division by 100. First let us find the remainders under
division by 25 and 4. We have ¢(25) =25—5 =20 and
¢(4) =4 —2=2. It follows from Euler's Theorem that
303%° = 1mod 25 and 3032 = 1mod4. Then

[3033%%],5 = [303]333 = [303]52 >3 = ([303]22)*° [303]35
= [303]35 = [3]35 = [3°]2s = [27]25 = [2]s,
[303%93], = [303]3% = [303]2*+! = ([303]2)5! [303]4
= [303]s = [3]a.
Since 3033% = 2mod 25, the remainder of 303%%® under
division by 100 is among the four numbers 2, 27 =2 + 25,

52 =2+425-2, and 77 =2+ 25-3. We pick the one that
has remainder 3 under division by 4. That's 27.



Problem 6. Find all integer solutions of the
equation 21x — 32y = 4.

An integer y is a part of an integer solution (x,y) of the
equation if and only if it is a solution of the linear congruence
—32y =4mod?21. Since —32 = 10mod?21, thisis
equivalent to 10y = 4mod21. Further, we can cancel the
common factor 2 on both sides of the congruence (since 2 is
coprime with 21): 10y = 4mod21 <= 5y = 2mod21.
To solve the latter linear congruence, we need to find the
multiplicative inverse of 5 modulo 21. This is —4 as
—4.5=-20=1mod?21. Hence

S5y =2mod?2]l <= y = —4-2 = —8mod 21.
In other words, y = —8 4+ 21k for some k € Z. The
corresponding value of x can be found from the equation:
x = (4+32y)/21 = (44 32(—8 + 21k))/21 = —12 + 32k
(it should be integer as well). Thus the general integer
solution is x = —12 + 32k, y = —8 + 21k, where k € 7Z.



Problem 7. Find all integer solutions of the
equation 2x + 3y +5z =7.

Let us rewrite the equation as 2x + 3y = ¢(z), where
c(z) =7 — 5z, and consider c(z) an integer parameter.

If (x,y) is an integer solution, then x is a solution of the
congruence 2x = c(z)mod3. Then 4x = 2¢(z)mod 3 and
x = 2c(z)mod 3. Conversely, if x =2c(z) + 3k, where

k € Z, then we can find y from the equation,

y = (c(z) —2x)/3 = —c(z) — 2k, and it is also an integer.
All this can be done for any integer value of z.

Thus the general integer solution of the original equation is

z=m,
x = 2¢c(m) + 3k = 3k — 10m + 14,
y=—c(m)—2k=—-2k+5m-—1,

where k and m are arbitrary integers.



Problem 8. Solve the equation
2x190 4+ x4+ x29 = 0 over the field Z;.

The equation is equivalent to
x®(2x™ +x*2 +1) =0.

Hence x =0 or 2x* +x*? +1 =0. By Fermat's
Little Theorem, x'% =1 for any nonzero x € Z;.
Since 0 is not a solution of the equation

2x™ 4+ x* 41 =0, this equation is equivalent to
2x+x*+1=0 <= (x+1)°=0 < x=-1

Thus the solutions are x =0 and x = 10
(note that —1 = 10mod 11).



Problem 9. Factor a polynomial p(x) = x® — 3x? + 3x — 2
into irreducible factors over the field Z-.

A quadratic or cubic polynomial is irreducible if and only if it
has no zeros. Indeed, if such a polynomial splits into a
product of two non-constant polynomials, then at least one of
the factors is linear. This implies that the original polynomial
has a zero.

Let us look for the zeros of p(x): p(0) = -2, p(1) = —1,
p(2) = 0. Hence p(x) is divisible by x — 2:
x3—=3x2+3x—2=(x—2)(x*—x+1).

Now let us look for the zeros of the polynomial

g(x) = x> — x+ 1. Note that values 0 and 1 can be skipped
this time. We obtain g(2) =3, ¢(3) =7 =0mod7. Hence
g(x) is divisible by x —3: x> —x + 1= (x — 3)(x + 2).

Thus x3 —3x% +3x —2 = (x —2)(x — 3)(x +2) over the
field Zs.



Problem 10. Factor p(x) = x* 4+ x> —2x*> +3x — 1 into
irreducible factors over the field Q.

Possible rational zeros of p are 1 and —1. They are not zeros.
Hence p is either irreducible over Q or else it is factored as

x*+x3—2x2+3x — 1= (ax® + bx + ¢)(a'x* + b'x + ¢').

Since p € Z[x], one can show that the factorization (if it
exists) can be chosen so that all coefficients are integer.
Additionally, we can assume that a > 0 (otherwise we could
multiply each factor by —1). Equating the corresponding
coefficients of the left-hand side and the right-hand side, we
obtain aa’ =1, abl +ab=1, ac’ + bb + d'c = -2,

bc’ + b'c =3 and cc’ = —1. The first and the last equations
imply that a=a' =1, c=1 or —1,and ¢’ = —c. Then
b+ b =1 and bb' = —2, which implies {b,b'} = {2, —1}.
Finallyy, c=—-1if b=2 and c=1 if b=—-1. Wecan
check that indeed

x4+ x3 -2 +3x —1=(x*+2x = 1)(x®* — x + 1).



