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Lecture 21:
Subrings and ideals.
Factor rings.



Subrings

Definition. Suppose R and Ry are rings. We say that Ry is
a subring (or sub-ring) of R if Ry is a subset of R and the
operations on Ry (addition and multiplication) agree with
those on R.

Let R be a ring. Given a subset S C R, we can define
addition and multiplication on S by restricting the
corresponding operations from R to S. Then S is a subring
of R as soon as it is a ring.

Proposition 1 The subset S is a subring if and only if it

(i) contains the zero: 0 € S,

(i) is closed under addition: x,y € S = x+y € S,

(iii) is closed under taking the negative: x € S — —x € S,
(iv) is closed under multiplication: x,y € S = xy € S.



Proposition 2 A subset S of a ring is a subring with respect
to the induced operations if and only if it is

(i) nonempty, and

(i) closed under addition, subtraction and multiplication:
x,yeS = x+y,x—y,xy €S.

Proposition 3 A subset S of a ring R is a subring with
respect to the induced operations if and only if it is

(i) a subgroup of the additive group R, and

(ii) closed under multiplication: x,y € S = xy € S.

Proposition 4 A subset S of a ring R is a subring with
respect to the induced operations if and only if it is

(i) a subgroup of the additive group R, and

(ii) a subsemigroup of the multiplicative semigroup R.



Examples. © R =7.

Since the additive group Z is cyclic, any subgroup is also
cyclic. The subgroups are the trivial group {0} and groups of
the form mZ = {mx | x € Z}, where m is a positive integer.
All these subgroups are also subrings.

o R=17,.

Since the additive group Z, is cyclic, any subgroup is also
cyclic. The subgroups are the trivial group {0} and groups of
the form mZ, = {mx | x € Z,}, where m is a proper divisor
of n. All these subgroups are also subrings.

Remark. If Ry is a subring of R, then the zero element in Ry is
the same as in R. On the other hand, if R and Ry are both
rings with unity, then the unity in Ry may not be the same as
in R. Indeed, in the ring Zq, the unity is 1, while in its
subring 270 = {0,2,4,6,8}, the unity is 6.



Ideals

Definition. Suppose R is a ring. We say that a subset S C R
is a left ideal of R if

e S is a subgroup of the additive group R,

e S is closed under left multiplication by any elements of R:
seS, xeER = xse€S8.

We say that a subset S C R is a right ideal of R if

e S is a subgroup of the additive group R,

e S is closed under right multiplication by any elements of R:
seS xeR = sxe8.

All left ideals and right ideals of the ring R are also called
one-sided ideals. A two-sided ideal (or simply an ideal) of
the ring R is a subset S C R that is both a left ideal and a
right ideal. That is,

e S is a subgroup of the additive group R,

e S is closed under multiplication by any elements of R:
s€S, xeR — xs,sx€eS.



Basic facts on the ideals

e Any left, right or two-sided ideal is a subring (with respect
to the induced operations).

e In a commutative ring, the notions of a left ideal, a right
ideal, and a two-sided ideal are equivalent.

e The trivial subring {0} is a two-sided ideal (all other ideals
are called nonzero).

e Any ring is a two-sided ideal of itself (all other ideals are
called proper).

e In a ring with unity, a one-sided ideal is proper if and only if
it does not contain the unity.

e For any element a of a ring R, the set Ra= {xa | x € R}
is a left ideal (called principal).

e For any element a of a ring R, the set aR = {ax | x € R}
is a right ideal (called principal).



Examples of ideals

e R=17.

The subrings are {0} and mZ = {mx | x € Z}, where m is a
positive integer. Each of them is a principal ideal.

o R=17,.

The subrings are {0} and mZ, = {mx | x € Z,}, where m is
a proper divisor of n. Each of them is a principal ideal.

e R=7ZxZ.

A subset {(m, m)| m € Z} is a subring but not an ideal.
One can show that all ideals are principal.

e R=FR; X R,, adirect product of rings.

If I; is a left ideal in R; and f, is a left ideal in Ry, then ; X I,
is a left ideal in Ry X R,. In the case R; and R, are rings with
unity, any left ideal is of that form (the same for right ideals).



Examples of ideals
e R =T[x], polynomials in one variable over a field.

For any polynomial p(x) there is a principal ideal

l, = p(x)F[x]. If p=0 then I, = {0}. Otherwise I, consists
of all polynomials divisible by p(x). Conversely, suppose / is a
nonzero ideal in F[x] and let p be a nonzero polynomial with
the least degree in /. For any f € F[x] we have f = pqg +r,
where g, r € F[x] and either r =0 or deg(r) < deg(p). If
the polynomial f belongs to the ideal /, so does r = f — pq.
By the choice of p, this implies r = 0. It follows that / = I,.

e R =T[x,y], polynomials in two variables over a field.

Let Ry be the set of all polynomials in R with no constant
term. Elements of Ry can be written as xf(x, y) + yg(x, y),
where f, g € F[x,y]. It follows that Ry is an ideal. This
ideal is not principal. Indeed, Ry contains x and y but does
not contain 1.



Factor space

Let X be a nonempty set and ~ be an equivalence relation on
X. Given an element x € X, the equivalence class of x,
denoted [x]. or simply [x], is the set of all elements of X that
are equivalent (i.e., related by ~) to x:

[x]. ={y € X |y ~x}.

Theorem Equivalence classes of the relation ~ form a
partition of the set X.

The set of all equivalence classes of ~ is denoted X/~ and
called the factor space (or quotient space) of X by the
relation ~.

In the case when the set X carries some structure (algebraic,
geometric, analytic, etc.), this structure may (or may not)
induce an analogous structure on the factor space X/~.



Factor ring

Let R be a ring. Given an equivalence relation ~ on R, we
say that the relation ~ is compatible with the operations
(addition and multiplication) in R if for any r1, r, s, € R,

rn~nrn and Si~S = n+si~n+s and rnsy ~ nS.

If this is the case, we can define operations on the factor space
R/~ by [r]+[s]=[r+s] and [r][s] = [rs] forall r,se R
(compatibility is required so that the operations are defined
uniquely).

Then R/~ is also a ring called the factor ring (or quotient
ring) of R.

If the ring R is commutative, then so is the factor ring R/~.
If R has the unity 1, then R/~ has the unity [1].



Question. When is an equivalence relation ~ on a ring R
compatible with the operations?

Let R be a ring and assume that an equivalence relation ~ on
R is compatible with the operations (so that the factor space
R/~ is also the factor ring).

Since R is an additive group and the relation ~ is compatible
with addition, the factor ring R/~ is a factor group in the
first place. As shown in group theory, it follows that

e | =[0]., the equivalence class of the zero, is a normal
subgroup of R, and

e R/~ = R/I, which means that every equivalence class is
acoset of /, [rl.=r+1 forall reR.

The fact that the subgroup / is normal is redundant here.
Indeed, the additive group R is abelian and hence all
subgroups are normal.



Lemma The subgroup / is a two-sided ideal in R.

Proof: Let a€ | and x € R. We need to show that

xa, ax € I. Since | = [0]., we have a ~ 0. By reflexivity,
x ~ x. By compatibility with multiplication, xa ~ x0 =0
and ax ~0x =0. Thus xa, ax € I.

Theorem If | is a two-sided ideal of a ring R, then the factor
group R/l is, indeed, a factor ring.

Proof: Let ~ be a relation on R such that a; ~ a, if and
only if a; € a4+ /. Then ~ is an equivalence relation
compatible with addition, and the factor space R/~ coincides
with the factor group R/I. To prove that R/I is a factor
ring, we only need to show that the relation ~ is compatible
with multiplication. Suppose a; ~ a> and b; ~ b,. Then
ai=a>+ h and by = b, + h' for some h, W € I. We obtain
albl = (32 + h)(b2 + h,) = 32b2 + (azh/ + hb2 + hh/) Since /
is a two-sided ideal, the products a>h’, hb, and hh' are
contained in /, and so is their sum. Thus a;b; ~ a>b,.



