MATH 415

Modern Algebra I

Lecture 21:
 Subrings and ideals. Factor rings.

Subrings

Definition. Suppose R and R_{0} are rings. We say that R_{0} is a subring (or sub-ring) of R if R_{0} is a subset of R and the operations on R_{0} (addition and multiplication) agree with those on R.

Let R be a ring. Given a subset $S \subset R$, we can define addition and multiplication on S by restricting the corresponding operations from R to S. Then S is a subring of R as soon as it is a ring.

Proposition 1 The subset S is a subring if and only if it
(i) contains the zero: $0 \in S$,
(ii) is closed under addition: $x, y \in S \Longrightarrow x+y \in S$,
(iii) is closed under taking the negative: $x \in S \Longrightarrow-x \in S$,
(iv) is closed under multiplication: $x, y \in S \Longrightarrow x y \in S$.

Proposition 2 A subset S of a ring is a subring with respect to the induced operations if and only if it is
(i) nonempty, and
(ii) closed under addition, subtraction and multiplication:
$x, y \in S \Longrightarrow x+y, x-y, x y \in S$.
Proposition 3 A subset S of a ring R is a subring with respect to the induced operations if and only if it is
(i) a subgroup of the additive group R, and
(ii) closed under multiplication: $x, y \in S \Longrightarrow x y \in S$.

Proposition 4 A subset S of a ring R is a subring with respect to the induced operations if and only if it is
(i) a subgroup of the additive group R, and
(ii) a subsemigroup of the multiplicative semigroup R.

Examples. - $R=\mathbb{Z}$.
Since the additive group \mathbb{Z} is cyclic, any subgroup is also cyclic. The subgroups are the trivial group $\{0\}$ and groups of the form $m \mathbb{Z}=\{m x \mid x \in \mathbb{Z}\}$, where m is a positive integer. All these subgroups are also subrings.

- $R=\mathbb{Z}_{n}$.

Since the additive group \mathbb{Z}_{n} is cyclic, any subgroup is also cyclic. The subgroups are the trivial group $\{0\}$ and groups of the form $m \mathbb{Z}_{n}=\left\{m x \mid x \in \mathbb{Z}_{n}\right\}$, where m is a proper divisor of n. All these subgroups are also subrings.

Remark. If R_{0} is a subring of R, then the zero element in R_{0} is the same as in R. On the other hand, if R and R_{0} are both rings with unity, then the unity in R_{0} may not be the same as in R. Indeed, in the ring \mathbb{Z}_{10}, the unity is 1 , while in its subring $2 \mathbb{Z}_{10}=\{0,2,4,6,8\}$, the unity is 6 .

Ideals

Definition. Suppose R is a ring. We say that a subset $S \subset R$ is a left ideal of R if

- S is a subgroup of the additive group R,
- S is closed under left multiplication by any elements of R :
$s \in S, x \in R \Longrightarrow x s \in S$.
We say that a subset $S \subset R$ is a right ideal of R if
- S is a subgroup of the additive group R,
- S is closed under right multiplication by any elements of R :
$s \in S, x \in R \Longrightarrow s x \in S$.
All left ideals and right ideals of the ring R are also called one-sided ideals. A two-sided ideal (or simply an ideal) of the ring R is a subset $S \subset R$ that is both a left ideal and a right ideal. That is,
- S is a subgroup of the additive group R,
- S is closed under multiplication by any elements of R :
$s \in S, x \in R \Longrightarrow x s, s x \in S$.

Basic facts on the ideals

- Any left, right or two-sided ideal is a subring (with respect to the induced operations).
- In a commutative ring, the notions of a left ideal, a right ideal, and a two-sided ideal are equivalent.
- The trivial subring $\{0\}$ is a two-sided ideal (all other ideals are called nonzero).
- Any ring is a two-sided ideal of itself (all other ideals are called proper).
- In a ring with unity, a one-sided ideal is proper if and only if it does not contain the unity.
- For any element a of a ring R, the set $R a=\{x a \mid x \in R\}$ is a left ideal (called principal).
- For any element a of a ring R, the set $a R=\{a x \mid x \in R\}$ is a right ideal (called principal).

Examples of ideals

- $R=\mathbb{Z}$.

The subrings are $\{0\}$ and $m \mathbb{Z}=\{m x \mid x \in \mathbb{Z}\}$, where m is a positive integer. Each of them is a principal ideal.

- $R=\mathbb{Z}_{n}$.

The subrings are $\{0\}$ and $m \mathbb{Z}_{n}=\left\{m x \mid x \in \mathbb{Z}_{n}\right\}$, where m is a proper divisor of n. Each of them is a principal ideal.

- $R=\mathbb{Z} \times \mathbb{Z}$.

A subset $\{(m, m) \mid m \in \mathbb{Z}\}$ is a subring but not an ideal. One can show that all ideals are principal.

- $R=R_{1} \times R_{2}$, a direct product of rings.

If I_{1} is a left ideal in R_{1} and I_{2} is a left ideal in R_{2}, then $I_{1} \times I_{2}$ is a left ideal in $R_{1} \times R_{2}$. In the case R_{1} and R_{2} are rings with unity, any left ideal is of that form (the same for right ideals).

Examples of ideals

- $R=\mathbb{F}[x]$, polynomials in one variable over a field.

For any polynomial $p(x)$ there is a principal ideal $I_{p}=p(x) \mathbb{F}[x]$. If $p=0$ then $I_{p}=\{0\}$. Otherwise I_{p} consists of all polynomials divisible by $p(x)$. Conversely, suppose I is a nonzero ideal in $\mathbb{F}[x]$ and let p be a nonzero polynomial with the least degree in l. For any $f \in \mathbb{F}[x]$ we have $f=p q+r$, where $q, r \in \mathbb{F}[x]$ and either $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(p)$. If the polynomial f belongs to the ideal I, so does $r=f-p q$. By the choice of p, this implies $r=0$. It follows that $I=I_{p}$.

- $R=\mathbb{F}[x, y]$, polynomials in two variables over a field. Let R_{0} be the set of all polynomials in R with no constant term. Elements of R_{0} can be written as $x f(x, y)+y g(x, y)$, where $f, g \in \mathbb{F}[x, y]$. It follows that R_{0} is an ideal. This ideal is not principal. Indeed, R_{0} contains x and y but does not contain 1 .

Factor space

Let X be a nonempty set and \sim be an equivalence relation on X. Given an element $x \in X$, the equivalence class of x, denoted $[x]_{\sim}$ or simply $[x]$, is the set of all elements of X that are equivalent (i.e., related by \sim) to x :

$$
[x]_{\sim}=\{y \in X \mid y \sim x\} .
$$

Theorem Equivalence classes of the relation \sim form a partition of the set X.

The set of all equivalence classes of \sim is denoted X / \sim and called the factor space (or quotient space) of X by the relation \sim.

In the case when the set X carries some structure (algebraic, geometric, analytic, etc.), this structure may (or may not) induce an analogous structure on the factor space X / \sim.

Factor ring

Let R be a ring. Given an equivalence relation \sim on R, we say that the relation \sim is compatible with the operations (addition and multiplication) in R if for any $r_{1}, r_{2}, s_{1}, s_{2} \in R$,

$$
r_{1} \sim r_{2} \text { and } s_{1} \sim s_{2} \Longrightarrow r_{1}+s_{1} \sim r_{2}+s_{2} \text { and } r_{1} s_{1} \sim r_{2} s_{2}
$$

If this is the case, we can define operations on the factor space R / \sim by $[r]+[s]=[r+s]$ and $[r][s]=[r s]$ for all $r, s \in R$ (compatibility is required so that the operations are defined uniquely).

Then R / \sim is also a ring called the factor ring (or quotient ring) of R.

If the ring R is commutative, then so is the factor ring R / \sim. If R has the unity 1 , then R / \sim has the unity [1].

Question. When is an equivalence relation \sim on a ring R compatible with the operations?

Let R be a ring and assume that an equivalence relation \sim on R is compatible with the operations (so that the factor space R / \sim is also the factor ring).

Since R is an additive group and the relation \sim is compatible with addition, the factor ring R / \sim is a factor group in the first place. As shown in group theory, it follows that

- $I=[0]_{\sim}$, the equivalence class of the zero, is a normal subgroup of R, and
- $R / \sim=R / I$, which means that every equivalence class is a coset of $I,[r]_{\sim}=r+I$ for all $r \in R$.

The fact that the subgroup $/$ is normal is redundant here. Indeed, the additive group R is abelian and hence all subgroups are normal.

Lemma The subgroup I is a two-sided ideal in R.
Proof: Let $a \in I$ and $x \in R$. We need to show that $x a, a x \in I$. Since $I=[0]_{\sim}$, we have $a \sim 0$. By reflexivity, $x \sim x$. By compatibility with multiplication, $x a \sim x 0=0$ and $a x \sim 0 x=0$. Thus $x a, a x \in I$.

Theorem If I is a two-sided ideal of a ring R, then the factor group R / I is, indeed, a factor ring.
Proof: Let \sim be a relation on R such that $a_{1} \sim a_{2}$ if and only if $a_{1} \in a_{2}+I$. Then \sim is an equivalence relation compatible with addition, and the factor space R / \sim coincides with the factor group R / I. To prove that R / I is a factor ring, we only need to show that the relation \sim is compatible with multiplication. Suppose $a_{1} \sim a_{2}$ and $b_{1} \sim b_{2}$. Then $a_{1}=a_{2}+h$ and $b_{1}=b_{2}+h^{\prime}$ for some $h, h^{\prime} \in I$. We obtain $a_{1} b_{1}=\left(a_{2}+h\right)\left(b_{2}+h^{\prime}\right)=a_{2} b_{2}+\left(a_{2} h^{\prime}+h b_{2}+h h^{\prime}\right)$. Since $/$ is a two-sided ideal, the products $a_{2} h^{\prime}, h b_{2}$ and $h h^{\prime}$ are contained in I, and so is their sum. Thus $a_{1} b_{1} \sim a_{2} b_{2}$.

