MATH 415 Modern Algebra I

Lecture 22: Homomorphisms of rings.

Homomorphism of rings

Definition. Let R and R' be rings. A function $f : R \to R'$ is called a **homomorphism of rings** if $f(r_1 + r_2) = f(r_1) + f(r_2)$ and $f(r_1r_2) = f(r_1)f(r_2)$ for all $r_1, r_2 \in R$.

That is, f is a homomorphism of the binary structure (R, +) to (R', +) and, simultaneously, a homomorphism of the binary structure (R, \cdot) to (R', \cdot) . In particular, f is a homomorphism of additive groups, which implies the following properties:

• f(0) = 0,

•
$$f(-r) = -f(r)$$
 for all $r \in R$,

• if H is an additive subgroup of R then f(H) is an additive subgroup of R',

• if H' is an additive subgroup of R' then $f^{-1}(H')$ is an additive subgroup of R,

• $f^{-1}(0)$ is an additive subgroup of R, called the **kernel** of f and denoted Ker(f).

More properties of homomorphisms

Let $f : R \to R'$ be a homomorphism of rings.

• If H is a subring of R, then f(H) is a subring of R'.

We already know that f(H) is an additive subgroup of R'. It remains to show that it is closed under multiplication in R'. Let $r'_1, r'_2 \in f(H)$. Then $r'_1 = f(r_1)$ and $r'_2 = f(r_2)$ for some $r_1, r_2 \in H$. Hence $r'_1r'_2 = f(r_1)f(r_2) = f(r_1r_2)$, which is in f(H) since H is closed under multiplication in R.

• If H' is a subring of R', then $f^{-1}(H')$ is a subring of R.

We already know that $f^{-1}(H')$ is an additive subgroup of R. It remains to show that it is closed under multiplication in R. Let $r_1, r_2 \in f^{-1}(H')$, that is, $f(r_1), f(r_2) \in H'$. Then $f(r_1r_2) = f(r_1)f(r_2)$ is in H' since H' is closed under multiplication in R'. Hence $r_1r_2 \in f^{-1}(H')$.

More properties of homomorphisms

• If H' is a left ideal in R', then $f^{-1}(H')$ is a left ideal in R.

We already know that $f^{-1}(H')$ is a subring of R. It remains to show that $r \in R$ and $a \in f^{-1}(H')$ imply $ra \in f^{-1}(H')$. We have $f(a) \in H'$. Then f(ra) = f(r)f(a) is in H' since H'is a left ideal in R'. In other words, $ra \in f^{-1}(H')$.

• If H' is a right ideal in R', then $f^{-1}(H')$ is a right ideal in R.

• If H' is a two-sided ideal in R', then $f^{-1}(H')$ is a two-sided ideal in R.

• The kernel Ker(f) is a two-sided ideal in R. Indeed, Ker(f) is the pre-image of the trivial ideal $\{0\}$ in R'.

More properties of homomorphisms

• If an element $a \in R$ is idempotent in R (that is, $a^2 = a$) then f(a) is idempotent in R'.

Indeed, $(f(a))^2 = f(a^2) = f(a)$.

• If 1_R is the unity in R then $f(1_R)$ is the unity in f(R). Let $r' \in f(R)$. Then r' = f(r) for some $r \in R$. We obtain $r'f(1_R) = f(r)f(1_R) = f(r \cdot 1_R) = f(r) = r'$ and $f(1_R)r' = f(1_R)f(r) = f(1_R \cdot r) = f(r) = r'$.

• If 1_R is the unity in R and R' is a domain with unity, then either $f(1_R)$ is the unity in R' or else the homomorphism f is identically zero.

If $f(1_R) = 0$ then f is identically zero: $f(r) = f(r \cdot 1_R) = f(r)f(1_R) = f(r) \cdot 0 = 0$ for all $r \in R$. Otherwise $f(1_R)$ is a nonzero idempotent element. We know that in a domain with unity, the only idempotent elements are the zero and the unity.

Examples of homomorphisms

• Trivial homomorphism.

Given any rings R and R', let $f(r) = 0_{R'}$ for all $r \in R$, where $0_{R'}$ is the zero element in R'. Then $f : R \to R'$ is a homomorphism of rings.

• Residue modulo *n* of an integer.

For any $k \in \mathbb{Z}$ let f(k) be the remainder of k after division by n. Then $f : \mathbb{Z} \to \mathbb{Z}_n$ is a homomorphism of rings.

• Change of the modulus.

Let *d* be a divisor of an integer $n \ge 1$. Then for any $k \in \mathbb{Z}$ the remainder after division of *k* by *n* uniquely determines the remainder after division of *k* by *d*. This gives rise to a map $f : \mathbb{Z}_n \to \mathbb{Z}_d$, which is a homomorphism of rings.

Examples of homomorphisms

• General homomorphisms of \mathbb{Z} .

Let *R* be any ring and *r* be any idempotent element in *R*: $r^2 = r$. Then there exists a unique homomorphism of rings $f: \mathbb{Z} \to R$ such that f(1) = r. It can be defined inductively: f(1) = r, f(k+1) = f(k) + r for all $k \ge 1$, f(0) = 0 and f(-k) = -f(k) for all $k \ge 1$.

• General homomorphisms of \mathbb{Z}_n .

Let R be any ring and $r \in R$ be any idempotent element such that its order in the additive group of R divides n. Then there exists a unique homomorphism $f:\mathbb{Z}_n \to R$ such that f(1) = r.

• Complex conjugate.

For any complex number z = x + yi let $f(z) = \overline{z} = x - yi$. Then f is a homomorphism of the ring \mathbb{C} onto itself. Suppose $f : R \to R'$ is a homomorphism of rings. It induces homomorphisms of certain rings built from R and R'.

• Rings of functions.

Given a nonempty set S, let $\mathcal{F}(S, R)$ be the ring of all functions $h: S \to R$. A homomorphism $\phi: \mathcal{F}(S, R) \to \mathcal{F}(S, R')$ is given by $\phi(h) = f \circ h$.

• Rings of polynomials.

A homomorphism $\phi: R[x] \rightarrow R'[x]$ is given by $\phi(a_0 + a_1x + a_2x^2 + \cdots + a_nx^n) =$ $f(a_0) + f(a_1)x + f(a_2)x^2 + \cdots + f(a_n)x^n.$

• Rings of matrices.

Let $\mathcal{M}_{n,n}(R)$ be the ring of all $n \times n$ matrices with entries from R. A homomorphism $\phi : \mathcal{M}_{n,n}(R) \to \mathcal{M}_{n,n}(R')$ is given by $\phi((a_{ij})_{1 \le i,j \le n}) = (f(a_{ij}))_{1 \le i,j \le n}$. Given a nonempty set S and a ring R, let $\mathcal{F}(S, R)$ be the ring of all functions $h: S \to R$.

• Evaluation at a point.

Let us fix a point $x_0 \in S$ and define a function $\phi : \mathcal{F}(S, R) \to R$ by $\phi(h) = h(x_0)$. Then ϕ is a homomorphism of rings.

• Restriction to a subset.

Let S_0 be a nonempty subset of S. A homomorphism $\phi : \mathcal{F}(S, R) \to \mathcal{F}(S_0, R)$ is given by $\phi(h) = h|_{S_0}$.

• Extension to a larger set.

Let S_1 be a set that contains S. For any function $h: S \to R$ let $\phi(h) = h_1$, where the function $h_1: S_1 \to R$ is defined by $h_1(x) = h(x)$ if $x \in S$ and $h_1(x) = 0$ otherwise. Then $\phi: \mathcal{F}(S, R) \to \mathcal{F}(S_1, R)$ is a homomorphism of rings.

Another example

Let $\mathbb{Z}[i] = \{m + in \mid m, n \in \mathbb{Z}\}$ be the ring of Gaussian integers. Consider a map $\phi : \mathbb{Z}[i] \to \mathbb{Z}_2$ given by $\phi(m + in) = (m + n) \mod 2$.

Then ϕ is a homomorphism of rings.

Indeed, let $z_1 = m_1 + in_1$ and $z_2 = m_2 + in_2$ be two Gaussian integers. Then $z_1 + z_2 = (m_1 + m_2) + i(n_1 + n_2)$ and $z_1z_2 = (m_1n_1 - m_2n_2) + i(m_1n_2 + m_2n_1)$. Observe that $(m_1 + m_2) + (n_1 + n_2) = (m_1 + n_1) + (m_2 + n_2)$, which implies that $\phi(z_1 + z_2) = \phi(z_1) + \phi(z_2)$. Further, $(m_1n_1 - m_2n_2) + (m_1n_2 + m_2n_1) =$ $= (m_1n_1 + m_2n_2 + m_1n_2 + m_2n_1) - 2m_2n_2$ $= (m_1 + n_1)(m_2 + n_2) - 2m_2n_2$,

which implies that $\phi(z_1z_2) = \phi(z_1)\phi(z_2)$.

• $\phi: \mathbb{Z}[i] \to \mathbb{Z}_2, \ \phi(m+in) = (m+n) \mod 2.$

The kernel $\operatorname{Ker}(\phi)$ consists of all numbers of the form m + ni, where m and n are integers of the same parity (both even or both wrong). Since ϕ is a homomorphism of rings, we conclude that $\operatorname{Ker}(\phi)$ is an ideal in $\mathbb{Z}[i]$. In particular, it is a ring. However $\operatorname{Ker}(\phi)$ is not a ring with unity since it does not contain 1.

Remark. In general, if a subring $R_0 \neq \{0\}$ of a ring R with unity does not contain the unity 1_R of R, it may still have its own unity $1_{R_0} \neq 0$. But this is never the case if R is a domain (and hence satisfies cancellation laws). Indeed, we would have $1_{R_0}1_{R_0} = 1_{R_0} = 1_R 1_{R_0}$ and, after cancellation, $1_{R_0} = 1_R$.

It is known that every ideal in $\mathbb{Z}[i]$ is principal. In this particular case, we have $\operatorname{Ker}(\phi) = (1+i)\mathbb{Z}[i]$. Indeed, if $m + in \in \operatorname{Ker}(\phi)$, then n = m + 2k for some integer k. Hence m + in = m + i(m + 2k) = m(1 + i) + k(2i) $= m(1 + i) + k(1 + i)^2 = (1 + i)(m + k + ki)$.

Isomorphism of rings

Definition. Let R and R' be rings. A function $f : R \to R'$ is called an **isomorphism of rings** if it is bijective and a homomorphism of rings.

A ring R is said to be **isomorphic** to a ring R' if there exists an isomorphism of rings $f : R \to R'$.

Theorem Isomorphism is an equivalence relation on the collection of all rings.

Theorem The following properties of rings are preserved under isomorphisms:

- commutativity,
- having the unity,
- having divisors of zero,
- being an integral domain,
- being a field.

Fundamental Theorem on Homomorphisms

Theorem Given a homomorphism $f : R \to R'$, the factor ring R / Ker(f) is isomorphic to f(R).

Proof. The factor ring is also a factor group. We know from group theory that an isomorphism of additive groups is given by $\phi(r + K) = f(r)$ for any $r \in R$, where K = Ker(f), the kernel of f. It remains to check that

$$\phi((r_1+K)(r_2+K))=\phi(r_1+K)\phi(r_2+K)$$

for all $r_1, r_2 \in R$. Indeed, $\phi((r_1 + K)(r_2 + K)) = \phi(r_1r_2 + K)$ = $f(r_1r_2) = f(r_1)f(r_2) = \phi(r_1 + K)\phi(r_2 + K)$.

Example. • $f : \mathbb{Z} \to \mathbb{Z}_n$, $f(k) = k \mod n$.

We have $\operatorname{Ker}(f) = n\mathbb{Z}$ and $f(\mathbb{Z}) = \mathbb{Z}_n$. Hence the factor ring $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to \mathbb{Z}_n .

Matrix model of complex numbers

Consider a function
$$\phi : \mathbb{C} \to \mathcal{M}_{2,2}(\mathbb{R})$$
 given by
 $\phi(x + iy) = \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$

for all $x, y \in \mathbb{R}$. Then ϕ is a homomorphism of rings.

Indeed, for any real numbers x, y, x' and y' we have

$$\begin{aligned}
(x + iy) + (x' + iy') &= (x + x') + i(y + y') \text{ and} \\
\begin{pmatrix} x & -y \\ y & x \end{pmatrix} + \begin{pmatrix} x' & -y' \\ y' & x' \end{pmatrix} &= \begin{pmatrix} x + x' & -(y + y') \\ y + y' & x + x' \end{pmatrix}.
\end{aligned}$$
Further, $(x + iy)(x' + iy') = (xx' - yy') + i(xy' + yx') \text{ and} \\
\begin{pmatrix} x & -y \\ y & x \end{pmatrix} \begin{pmatrix} x' & -y' \\ y' & x' \end{pmatrix} &= \begin{pmatrix} xx' - yy' & -(xy' + yx') \\ xy' + yx' & xx' - yy' \end{pmatrix}.
\end{aligned}$

The kernel $\operatorname{Ker}(\phi)$ is clearly trivial. It follows that the ring \mathbb{C} is isomorphic to $\phi(\mathbb{C})$. In particular, $\phi(\mathbb{C})$ is a field.