MATH 415
 Modern Algebra I

Lecture 22:
Homomorphisms of rings.

Homomorphism of rings

Definition. Let R and R^{\prime} be rings. A function $f: R \rightarrow R^{\prime}$ is called a homomorphism of rings if $f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)$ and $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ for all $r_{1}, r_{2} \in R$.

That is, f is a homomorphism of the binary structure $(R,+)$ to ($R^{\prime},+$) and, simultaneously, a homomorphism of the binary structure (R, \cdot) to $\left(R^{\prime}, \cdot\right)$. In particular, f is a homomorphism of additive groups, which implies the following properties:

- $f(0)=0$,
- $f(-r)=-f(r)$ for all $r \in R$,
- if H is an additive subgroup of R then $f(H)$ is an additive subgroup of R^{\prime},
- if H^{\prime} is an additive subgroup of R^{\prime} then $f^{-1}\left(H^{\prime}\right)$ is an additive subgroup of R,
- $f^{-1}(0)$ is an additive subgroup of R, called the kernel of f and denoted $\operatorname{Ker}(f)$.

More properties of homomorphisms

Let $f: R \rightarrow R^{\prime}$ be a homomorphism of rings.

- If H is a subring of R, then $f(H)$ is a subring of R^{\prime}.

We already know that $f(H)$ is an additive subgroup of R^{\prime}. It remains to show that it is closed under multiplication in R^{\prime}. Let $r_{1}^{\prime}, r_{2}^{\prime} \in f(H)$. Then $r_{1}^{\prime}=f\left(r_{1}\right)$ and $r_{2}^{\prime}=f\left(r_{2}\right)$ for some $r_{1}, r_{2} \in H$. Hence $r_{1}^{\prime} r_{2}^{\prime}=f\left(r_{1}\right) f\left(r_{2}\right)=f\left(r_{1} r_{2}\right)$, which is in $f(H)$ since H is closed under multiplication in R.

- If H^{\prime} is a subring of R^{\prime}, then $f^{-1}\left(H^{\prime}\right)$ is a subring of R. We already know that $f^{-1}\left(H^{\prime}\right)$ is an additive subgroup of R. It remains to show that it is closed under multiplication in R. Let $r_{1}, r_{2} \in f^{-1}\left(H^{\prime}\right)$, that is, $f\left(r_{1}\right), f\left(r_{2}\right) \in H^{\prime}$. Then $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ is in H^{\prime} since H^{\prime} is closed under multiplication in R^{\prime}. Hence $r_{1} r_{2} \in f^{-1}\left(H^{\prime}\right)$.

More properties of homomorphisms

- If H^{\prime} is a left ideal in R^{\prime}, then $f^{-1}\left(H^{\prime}\right)$ is a left ideal in R.
We already know that $f^{-1}\left(H^{\prime}\right)$ is a subring of R. It remains to show that $r \in R$ and $a \in f^{-1}\left(H^{\prime}\right)$ imply $r a \in f^{-1}\left(H^{\prime}\right)$. We have $f(a) \in H^{\prime}$. Then $f(r a)=f(r) f(a)$ is in H^{\prime} since H^{\prime} is a left ideal in R^{\prime}. In other words, $r a \in f^{-1}\left(H^{\prime}\right)$.
- If H^{\prime} is a right ideal in R^{\prime}, then $f^{-1}\left(H^{\prime}\right)$ is a right ideal in R.
- If H^{\prime} is a two-sided ideal in R^{\prime}, then $f^{-1}\left(H^{\prime}\right)$ is a two-sided ideal in R.
- The kernel $\operatorname{Ker}(f)$ is a two-sided ideal in R. Indeed, $\operatorname{Ker}(f)$ is the pre-image of the trivial ideal $\{0\}$ in R^{\prime}.

More properties of homomorphisms

- If an element $a \in R$ is idempotent in R (that is, $a^{2}=a$) then $f(a)$ is idempotent in R^{\prime}.
Indeed, $(f(a))^{2}=f\left(a^{2}\right)=f(a)$.
- If 1_{R} is the unity in R then $f\left(1_{R}\right)$ is the unity in $f(R)$.

Let $r^{\prime} \in f(R)$. Then $r^{\prime}=f(r)$ for some $r \in R$. We obtain $r^{\prime} f\left(1_{R}\right)=f(r) f\left(1_{R}\right)=f\left(r \cdot 1_{R}\right)=f(r)=r^{\prime}$ and $f\left(1_{R}\right) r^{\prime}=f\left(1_{R}\right) f(r)=f\left(1_{R} \cdot r\right)=f(r)=r^{\prime}$.

- If 1_{R} is the unity in R and R^{\prime} is a domain with unity, then either $f\left(1_{R}\right)$ is the unity in R^{\prime} or else the homomorphism f is identically zero.
If $f\left(1_{R}\right)=0$ then f is identically zero: $f(r)=f\left(r \cdot 1_{R}\right)=$ $f(r) f\left(1_{R}\right)=f(r) \cdot 0=0$ for all $r \in R$. Otherwise $f\left(1_{R}\right)$ is a nonzero idempotent element. We know that in a domain with unity, the only idempotent elements are the zero and the unity.

Examples of homomorphisms

- Trivial homomorphism.

Given any rings R and R^{\prime}, let $f(r)=0_{R^{\prime}}$ for all $r \in R$, where $0_{R^{\prime}}$ is the zero element in R^{\prime}. Then $f: R \rightarrow R^{\prime}$ is a homomorphism of rings.

- Residue modulo n of an integer.

For any $k \in \mathbb{Z}$ let $f(k)$ be the remainder of k after division by n. Then $f: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ is a homomorphism of rings.

- Change of the modulus.

Let d be a divisor of an integer $n \geq 1$. Then for any $k \in \mathbb{Z}$ the remainder after division of k by n uniquely determines the remainder after division of k by d. This gives rise to a map $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{d}$, which is a homomorphism of rings.

Examples of homomorphisms

- General homomorphisms of \mathbb{Z}.

Let R be any ring and r be any idempotent element in R : $r^{2}=r$. Then there exists a unique homomorphism of rings $f: \mathbb{Z} \rightarrow R$ such that $f(1)=r$. It can be defined inductively: $f(1)=r, f(k+1)=f(k)+r$ for all $k \geq 1, f(0)=0$ and $f(-k)=-f(k)$ for all $k \geq 1$.

- General homomorphisms of \mathbb{Z}_{n}.

Let R be any ring and $r \in R$ be any idempotent element such that its order in the additive group of R divides n. Then there exists a unique homomorphism $f: \mathbb{Z}_{n} \rightarrow R$ such that $f(1)=r$.

- Complex conjugate.

For any complex number $z=x+y i$ let $f(z)=\bar{z}=x-y i$. Then f is a homomorphism of the ring \mathbb{C} onto itself.

Suppose $f: R \rightarrow R^{\prime}$ is a homomorphism of rings. It induces homomorphisms of certain rings built from R and R^{\prime}.

- Rings of functions.

Given a nonempty set S, let $\mathcal{F}(S, R)$ be the ring of all functions $h: S \rightarrow R$. A homomorphism $\phi: \mathcal{F}(S, R) \rightarrow \mathcal{F}\left(S, R^{\prime}\right)$ is given by $\phi(h)=f \circ h$.

- Rings of polynomials.

A homomorphism $\phi: R[x] \rightarrow R^{\prime}[x]$ is given by $\phi\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right)=$ $f\left(a_{0}\right)+f\left(a_{1}\right) x+f\left(a_{2}\right) x^{2}+\cdots+f\left(a_{n}\right) x^{n}$.

- Rings of matrices.

Let $\mathcal{M}_{n, n}(R)$ be the ring of all $n \times n$ matrices with entries from R. A homomorphism $\phi: \mathcal{M}_{n, n}(R) \rightarrow \mathcal{M}_{n, n}\left(R^{\prime}\right)$ is given by $\phi\left(\left(a_{i j}\right)_{1 \leq i, j \leq n}\right)=\left(f\left(a_{i j}\right)\right)_{1 \leq i, j \leq n}$.

Given a nonempty set S and a ring R, let $\mathcal{F}(S, R)$ be the ring of all functions $h: S \rightarrow R$.

- Evaluation at a point.

Let us fix a point $x_{0} \in S$ and define a function $\phi: \mathcal{F}(S, R) \rightarrow R$ by $\phi(h)=h\left(x_{0}\right)$. Then ϕ is a homomorphism of rings.

- Restriction to a subset.

Let S_{0} be a nonempty subset of S. A homomorphism $\phi: \mathcal{F}(S, R) \rightarrow \mathcal{F}\left(S_{0}, R\right)$ is given by $\phi(h)=\left.h\right|_{S_{0}}$.

- Extension to a larger set.

Let S_{1} be a set that contains S. For any function $h: S \rightarrow R$ let $\phi(h)=h_{1}$, where the function $h_{1}: S_{1} \rightarrow R$ is defined by $h_{1}(x)=h(x)$ if $x \in S$ and $h_{1}(x)=0$ otherwise. Then $\phi: \mathcal{F}(S, R) \rightarrow \mathcal{F}\left(S_{1}, R\right)$ is a homomorphism of rings.

Another example

Let $\mathbb{Z}[i]=\{m+i n \mid m, n \in \mathbb{Z}\}$ be the ring of Gaussian integers. Consider a map $\phi: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{2}$ given by

$$
\phi(m+i n)=(m+n) \bmod 2 .
$$

Then ϕ is a homomorphism of rings.
Indeed, let $z_{1}=m_{1}+i n_{1}$ and $z_{2}=m_{2}+i n_{2}$ be two Gaussian integers. Then $z_{1}+z_{2}=\left(m_{1}+m_{2}\right)+i\left(n_{1}+n_{2}\right)$ and $z_{1} z_{2}=\left(m_{1} n_{1}-m_{2} n_{2}\right)+i\left(m_{1} n_{2}+m_{2} n_{1}\right)$. Observe that

$$
\left(m_{1}+m_{2}\right)+\left(n_{1}+n_{2}\right)=\left(m_{1}+n_{1}\right)+\left(m_{2}+n_{2}\right),
$$

which implies that $\phi\left(z_{1}+z_{2}\right)=\phi\left(z_{1}\right)+\phi\left(z_{2}\right)$. Further,

$$
\begin{aligned}
\left(m_{1} n_{1}-\right. & \left.m_{2} n_{2}\right)+\left(m_{1} n_{2}+m_{2} n_{1}\right)= \\
& =\left(m_{1} n_{1}+m_{2} n_{2}+m_{1} n_{2}+m_{2} n_{1}\right)-2 m_{2} n_{2} \\
& =\left(m_{1}+n_{1}\right)\left(m_{2}+n_{2}\right)-2 m_{2} n_{2},
\end{aligned}
$$

which implies that $\phi\left(z_{1} z_{2}\right)=\phi\left(z_{1}\right) \phi\left(z_{2}\right)$.

- $\phi: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{2}, \quad \phi(m+i n)=(m+n) \bmod 2$.

The kernel $\operatorname{Ker}(\phi)$ consists of all numbers of the form $m+n i$, where m and n are integers of the same parity (both even or both wrong). Since ϕ is a homomorphism of rings, we conclude that $\operatorname{Ker}(\phi)$ is an ideal in $\mathbb{Z}[i]$. In particular, it is a ring. However $\operatorname{Ker}(\phi)$ is not a ring with unity since it does not contain 1.

Remark. In general, if a subring $R_{0} \neq\{0\}$ of a ring R with unity does not contain the unity 1_{R} of R, it may still have its own unity $1_{R_{0}} \neq 0$. But this is never the case if R is a domain (and hence satisfies cancellation laws). Indeed, we would have $1_{R_{0}} 1_{R_{0}}=1_{R_{0}}=1_{R} 1_{R_{0}}$ and, after cancellation, $1_{R_{0}}=1_{R}$.

It is known that every ideal in $\mathbb{Z}[i]$ is principal. In this particular case, we have $\operatorname{Ker}(\phi)=(1+i) \mathbb{Z}[i]$. Indeed, if $m+i n \in \operatorname{Ker}(\phi)$, then $n=m+2 k$ for some integer k. Hence $m+i n=m+i(m+2 k)=m(1+i)+k(2 i)$
$=m(1+i)+k(1+i)^{2}=(1+i)(m+k+k i)$.

Isomorphism of rings

Definition. Let R and R^{\prime} be rings. A function $f: R \rightarrow R^{\prime}$ is called an isomorphism of rings if it is bijective and a homomorphism of rings.
A ring R is said to be isomorphic to a ring R^{\prime} if there exists an isomorphism of rings $f: R \rightarrow R^{\prime}$.

Theorem Isomorphism is an equivalence relation on the collection of all rings.
Theorem The following properties of rings are preserved under isomorphisms:

- commutativity,
- having the unity,
- having divisors of zero,
- being an integral domain,
- being a field.

Fundamental Theorem on Homomorphisms

Theorem Given a homomorphism $f: R \rightarrow R^{\prime}$, the factor ring $R / \operatorname{Ker}(f)$ is isomorphic to $f(R)$.

Proof. The factor ring is also a factor group. We know from group theory that an isomorphism of additive groups is given by $\phi(r+K)=f(r)$ for any $r \in R$, where $K=\operatorname{Ker}(f)$, the kernel of f. It remains to check that

$$
\phi\left(\left(r_{1}+K\right)\left(r_{2}+K\right)\right)=\phi\left(r_{1}+K\right) \phi\left(r_{2}+K\right)
$$

for all $r_{1}, r_{2} \in R$. Indeed, $\phi\left(\left(r_{1}+K\right)\left(r_{2}+K\right)\right)=\phi\left(r_{1} r_{2}+K\right)$
$=f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)=\phi\left(r_{1}+K\right) \phi\left(r_{2}+K\right)$.
Example. • $f: \mathbb{Z} \rightarrow \mathbb{Z}_{n}, \quad f(k)=k \bmod n$.
We have $\operatorname{Ker}(f)=n \mathbb{Z}$ and $f(\mathbb{Z})=\mathbb{Z}_{n}$. Hence the factor ring $\mathbb{Z} / n \mathbb{Z}$ is isomorphic to \mathbb{Z}_{n}.

Matrix model of complex numbers

Consider a function $\phi: \mathbb{C} \rightarrow \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$
\phi(x+i y)=\left(\begin{array}{rr}
x & -y \\
y & x
\end{array}\right)
$$

for all $x, y \in \mathbb{R}$. Then ϕ is a homomorphism of rings.
Indeed, for any real numbers x, y, x^{\prime} and y^{\prime} we have $(x+i y)+\left(x^{\prime}+i y^{\prime}\right)=\left(x+x^{\prime}\right)+i\left(y+y^{\prime}\right)$ and

$$
\left(\begin{array}{rr}
x & -y \\
y & x
\end{array}\right)+\left(\begin{array}{rr}
x^{\prime} & -y^{\prime} \\
y^{\prime} & x^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
x+x^{\prime} & -\left(y+y^{\prime}\right) \\
y+y^{\prime} & x+x^{\prime}
\end{array}\right) .
$$

Further, $(x+i y)\left(x^{\prime}+i y^{\prime}\right)=\left(x x^{\prime}-y y^{\prime}\right)+i\left(x y^{\prime}+y x^{\prime}\right)$ and

$$
\left(\begin{array}{rr}
x & -y \\
y & x
\end{array}\right)\left(\begin{array}{cc}
x^{\prime} & -y^{\prime} \\
y^{\prime} & x^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
x x^{\prime}-y y^{\prime} & -\left(x y^{\prime}+y x^{\prime}\right) \\
x y^{\prime}+y x^{\prime} & x x^{\prime}-y y^{\prime}
\end{array}\right) .
$$

The kernel $\operatorname{Ker}(\phi)$ is clearly trivial. It follows that the ring \mathbb{C} is isomorphic to $\phi(\mathbb{C})$. In particular, $\phi(\mathbb{C})$ is a field.

