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Lecture 22:

Homomorphisms of rings.



Homomorphism of rings

Definition. Let R and R ′ be rings. A function f : R → R ′ is
called a homomorphism of rings if f (r1 + r2) = f (r1) + f (r2)
and f (r1r2) = f (r1)f (r2) for all r1, r2 ∈ R .

That is, f is a homomorphism of the binary structure (R ,+)
to (R ′,+) and, simultaneously, a homomorphism of the binary
structure (R , ·) to (R ′, ·). In particular, f is a homomorphism
of additive groups, which implies the following properties:

• f (0) = 0,
• f (−r) = −f (r) for all r ∈ R ,
• if H is an additive subgroup of R then f (H) is an additive

subgroup of R ′,
• if H ′ is an additive subgroup of R ′ then f −1(H ′) is an

additive subgroup of R ,
• f −1(0) is an additive subgroup of R , called the kernel of

f and denoted Ker(f ).



More properties of homomorphisms

Let f : R → R ′ be a homomorphism of rings.

• If H is a subring of R , then f (H) is a subring of R ′.

We already know that f (H) is an additive subgroup of R ′. It
remains to show that it is closed under multiplication in R ′.
Let r ′

1
, r ′

2
∈ f (H). Then r ′

1
= f (r1) and r ′

2
= f (r2) for some

r1, r2 ∈ H. Hence r ′
1
r ′
2
= f (r1)f (r2) = f (r1r2), which is in

f (H) since H is closed under multiplication in R .

• If H ′ is a subring of R ′, then f −1(H ′) is a subring of R .

We already know that f −1(H ′) is an additive subgroup of R .
It remains to show that it is closed under multiplication in R .
Let r1, r2 ∈ f −1(H ′), that is, f (r1), f (r2) ∈ H ′. Then
f (r1r2) = f (r1)f (r2) is in H ′ since H ′ is closed under
multiplication in R ′. Hence r1r2 ∈ f −1(H ′).



More properties of homomorphisms

• If H ′ is a left ideal in R ′, then f −1(H ′) is a left
ideal in R.

We already know that f −1(H ′) is a subring of R . It remains
to show that r ∈ R and a ∈ f −1(H ′) imply ra ∈ f −1(H ′).
We have f (a) ∈ H ′. Then f (ra) = f (r)f (a) is in H ′ since H ′

is a left ideal in R ′. In other words, ra ∈ f −1(H ′).

• If H ′ is a right ideal in R ′, then f −1(H ′) is a
right ideal in R.

• If H ′ is a two-sided ideal in R ′, then f −1(H ′) is
a two-sided ideal in R.

• The kernel Ker(f ) is a two-sided ideal in R.

Indeed, Ker(f ) is the pre-image of the trivial ideal {0} in R ′.



More properties of homomorphisms

• If an element a ∈ R is idempotent in R (that is, a2 = a)
then f (a) is idempotent in R ′.

Indeed, (f (a))2 = f (a2) = f (a).

• If 1R is the unity in R then f (1R) is the unity in f (R).

Let r ′ ∈ f (R). Then r ′ = f (r) for some r ∈ R . We obtain
r ′f (1R) = f (r)f (1R) = f (r · 1R) = f (r) = r ′ and
f (1R)r

′ = f (1R)f (r) = f (1R · r) = f (r) = r ′.

• If 1R is the unity in R and R ′ is a domain with unity, then
either f (1R) is the unity in R ′ or else the homomorphism f is
identically zero.

If f (1R) = 0 then f is identically zero: f (r) = f (r · 1R) =
f (r)f (1R) = f (r) · 0 = 0 for all r ∈ R . Otherwise f (1R) is a
nonzero idempotent element. We know that in a domain with
unity, the only idempotent elements are the zero and the unity.



Examples of homomorphisms

• Trivial homomorphism.

Given any rings R and R ′, let f (r) = 0R′ for all r ∈ R , where
0R′ is the zero element in R ′. Then f : R → R ′ is a
homomorphism of rings.

• Residue modulo n of an integer.

For any k ∈ Z let f (k) be the remainder of k after division by
n. Then f : Z → Zn is a homomorphism of rings.

• Change of the modulus.

Let d be a divisor of an integer n ≥ 1. Then for any k ∈ Z

the remainder after division of k by n uniquely determines the
remainder after division of k by d . This gives rise to a map
f : Zn → Zd , which is a homomorphism of rings.



Examples of homomorphisms

• General homomorphisms of Z.

Let R be any ring and r be any idempotent element in R :
r 2 = r . Then there exists a unique homomorphism of rings
f : Z → R such that f (1) = r . It can be defined inductively:
f (1) = r , f (k + 1) = f (k) + r for all k ≥ 1, f (0) = 0 and
f (−k) = −f (k) for all k ≥ 1.

• General homomorphisms of Zn.

Let R be any ring and r ∈ R be any idempotent element such
that its order in the additive group of R divides n. Then there
exists a unique homomorphism f :Zn→R such that f (1) = r .

• Complex conjugate.

For any complex number z = x + yi let f (z) = z̄ = x − yi .
Then f is a homomorphism of the ring C onto itself.



Suppose f : R → R ′ is a homomorphism of rings. It induces
homomorphisms of certain rings built from R and R ′.

• Rings of functions.

Given a nonempty set S , let F(S ,R) be the ring of all
functions h : S → R . A homomorphism
φ : F(S ,R) → F(S ,R ′) is given by φ(h) = f ◦h.

• Rings of polynomials.

A homomorphism φ : R[x ] → R ′[x ] is given by
φ(a0 + a1x + a2x

2 + · · ·+ anx
n) =

f (a0) + f (a1)x + f (a2)x
2 + · · ·+ f (an)x

n.

• Rings of matrices.

Let Mn,n(R) be the ring of all n×n matrices with entries
from R . A homomorphism φ : Mn,n(R) → Mn,n(R

′) is given
by φ

(

(aij)1≤i ,j≤n

)

= (f (aij))1≤i ,j≤n.



Given a nonempty set S and a ring R , let F(S ,R) be the ring
of all functions h : S → R .

• Evaluation at a point.

Let us fix a point x0 ∈ S and define a function
φ : F(S ,R) → R by φ(h) = h(x0). Then φ is a
homomorphism of rings.

• Restriction to a subset.

Let S0 be a nonempty subset of S . A homomorphism
φ : F(S ,R) → F(S0,R) is given by φ(h) = h|S0 .

• Extension to a larger set.

Let S1 be a set that contains S . For any function h : S → R

let φ(h) = h1, where the function h1 : S1 → R is defined by
h1(x) = h(x) if x ∈ S and h1(x) = 0 otherwise. Then
φ : F(S ,R) → F(S1,R) is a homomorphism of rings.



Another example

Let Z[i ] = {m + in | m, n ∈ Z} be the ring of Gaussian
integers. Consider a map φ : Z[i ] → Z2 given by

φ(m + in) = (m + n)mod 2.

Then φ is a homomorphism of rings.

Indeed, let z1 = m1 + in1 and z2 = m2 + in2 be two Gaussian
integers. Then z1 + z2 = (m1 +m2) + i(n1 + n2) and
z1z2 = (m1n1 −m2n2) + i(m1n2 +m2n1). Observe that

(m1 +m2) + (n1 + n2) = (m1 + n1) + (m2 + n2),

which implies that φ(z1 + z2) = φ(z1) + φ(z2). Further,

(m1n1 −m2n2) + (m1n2 +m2n1) =
= (m1n1 +m2n2 +m1n2 +m2n1)− 2m2n2
= (m1 + n1)(m2 + n2)− 2m2n2,

which implies that φ(z1z2) = φ(z1)φ(z2).



• φ : Z[i ] → Z2, φ(m + in) = (m + n)mod 2.

The kernel Ker(φ) consists of all numbers of the form
m + ni , where m and n are integers of the same parity (both
even or both wrong). Since φ is a homomorphism of rings, we
conclude that Ker(φ) is an ideal in Z[i ]. In particular, it is a
ring. However Ker(φ) is not a ring with unity since it does
not contain 1.

Remark. In general, if a subring R0 6= {0} of a ring R with
unity does not contain the unity 1R of R , it may still have its
own unity 1R0

6= 0. But this is never the case if R is a domain
(and hence satisfies cancellation laws). Indeed, we would have
1R0

1R0
= 1R0

= 1R1R0
and, after cancellation, 1R0

= 1R .

It is known that every ideal in Z[i ] is principal. In this
particular case, we have Ker(φ) = (1 + i)Z[i ]. Indeed, if
m + in ∈ Ker(φ), then n = m + 2k for some integer k.
Hence m + in = m + i(m + 2k) = m(1 + i) + k(2i)
= m(1 + i) + k(1 + i)2 = (1 + i)(m + k + ki).



Isomorphism of rings

Definition. Let R and R ′ be rings. A function f : R → R ′ is
called an isomorphism of rings if it is bijective and a
homomorphism of rings.

A ring R is said to be isomorphic to a ring R ′ if there exists
an isomorphism of rings f : R → R ′.

Theorem Isomorphism is an equivalence relation on the
collection of all rings.

Theorem The following properties of rings are preserved
under isomorphisms:
• commutativity,
• having the unity,
• having divisors of zero,
• being an integral domain,
• being a field.



Fundamental Theorem on Homomorphisms

Theorem Given a homomorphism f : R → R ′,
the factor ring R/Ker(f ) is isomorphic to f (R).

Proof. The factor ring is also a factor group. We know from
group theory that an isomorphism of additive groups is given
by φ(r + K ) = f (r) for any r ∈ R , where K = Ker(f ), the
kernel of f . It remains to check that

φ((r1 + K )(r2 + K )) = φ(r1 + K )φ(r2 + K )

for all r1, r2 ∈ R . Indeed, φ((r1 + K )(r2 + K )) = φ(r1r2 + K )
= f (r1r2) = f (r1)f (r2) = φ(r1 + K )φ(r2 + K ).

Example. • f : Z → Zn, f (k) = k mod n.

We have Ker(f ) = nZ and f (Z) = Zn. Hence the factor
ring Z/nZ is isomorphic to Zn.



Matrix model of complex numbers

Consider a function φ : C → M2,2(R) given by

φ(x + iy ) =

(

x −y

y x

)

for all x , y ∈ R. Then φ is a homomorphism of rings.

Indeed, for any real numbers x , y , x ′ and y ′ we have
(x + iy ) + (x ′ + iy ′) = (x + x ′) + i(y + y ′) and

(

x −y

y x

)

+

(

x ′ −y ′

y ′ x ′

)

=

(

x + x ′ −(y + y ′)
y + y ′ x + x ′

)

.

Further, (x + iy )(x ′ + iy ′) = (xx ′ − yy ′) + i(xy ′ + yx ′) and
(

x −y

y x

)(

x ′ −y ′

y ′ x ′

)

=

(

xx ′ − yy ′ −(xy ′ + yx ′)
xy ′ + yx ′ xx ′ − yy ′

)

.

The kernel Ker(φ) is clearly trivial. It follows that the ring C

is isomorphic to φ(C). In particular, φ(C) is a field.


