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Lecture 23:
Prime and maximal ideals.
Ideals in polynomial rings.



Prime ideals

Definition. A (two-sided) ideal / in a ring R is called prime if
for any elements x,y € R we have

xyel = xeloryel

Example. In the ring Z, every nontrivial proper ideal is of the
form nZ, where n> 1. This ideal is prime if and only if n is
a prime number.

The entire ring R is always a prime ideal of itself. The trivial
ideal {0} is prime if and only if the ring R has no divisors of
zero.

Theorem The ideal / is prime in the ring R if and only if the
factor ring R/l has no divisors of zero.

x+1#0+1 and y+1#0+1 while (x+1)(y+1)=
xy+1 =1 sothat x+/ and y -+ are divisors of zero in R/I.



Maximal ideals

Definition. A (two-sided) ideal / in a ring R is called maximal
if / # R and for any ideal J satisfying | C J C R, we have
J=1o J=R.

Example. In the ring Z, every nontrivial proper ideal is of the
form nZ, where n > 1. This ideal is contained in an ideal
mZ if and only if m divides n. It follows that the ideal nZ is
maximal if and only if it is prime.

Theorem A proper ideal / in the ring R is maximal if and
only if the factor ring R/l has no (two-sided) ideals other
than the trivial ideal and itself.

Definition. A non-trivial ring R is called simple if it has no
ideals other than the trivial ideal and itself.

A ring is simple if and only if the trivial ideal {0} is maximal.



Theorem A proper ideal / in the ring R is maximal
if and only if the factor ring R/I is simple.

Proof. Consider a map ¢ : R — R/I given by ¢(x) = x +/
for all x € R. This map is a homomorphism of rings.

Suppose R/l has a nontrivial proper ideal J'. Then
J=¢7}(J) is anideal in R such that / C J C R. Since
the map ¢ is onto, it follows that J# / and J# R. In
particular, the ideal / is not maximal.

Conversely, assume that there is an ideal J in R such that

| C JC R while J# 1 and J# R. Then J' = ¢(J) is an
ideal in ¢(R) = R/I. The ideal J is nontrivial since J is not
contained in the kernel Ker(¢) = 1. Since | C J, it follows
that ¢(J) = J' is disjoint from ¢(R\ J). In particular, J' is
a proper ideal in R/I.



Theorem Suppose R is a commutative ring with
unity. Then R is simple if and only if it is a field.

Proof. Assume R is a field and let / be a nontrivial ideal in R.
Take any nonzero element a € /. Since R is a field, this
element admits a multiplicative inverse a—. Then for any

x € R we have x = 1x = (aa ')x = a(a~'x) € . That s,

I =R.

Now assume R is not a field. Then there is a nonzero element
a € R that does not admit a multiplicative inverse. Hence
aR = {ax | x € R}, which is an ideal in R, does not contain
the unity 1. In particular, aR is a proper ideal. It is
nontrivial since a=a-1 € aR.



Corollary 1 Suppose R is a commutative ring with
unity. Then a proper ideal /| C R is maximal if and
only if the factor ring R// is a field.

Corollary 2 Suppose R is a commutative ring with
unity. Then any maximal ideal in R is prime.

Remark. If the ring R is not commutative then the
corollaries (and the preceding theorem) may fail.
For example, in the ring M, ,(R) of nxn matrices
with real entries (n > 2), the trivial ideal is maximal
but not prime. Note that this ring does have
one-sided proper nontrivial ideals.



Ideals in the ring of polynomials

Theorem Let [F be a field. Then any ideal in the
ring [F[x] is of the form

p(X)F[x] = {p(x)q(x) | q(x) € Fx]}
for some polynomial p(x) € F[x].

Theorem Let F be a field and p(x) € F[x]| be a
polynomial of positive degree. Then the following
conditions are equivalent:

p(x) is irreducible over F,

the ideal p(x)F[x] is prime,

the ideal p(x)F[x] is maximal,

the factor ring F[x]/p(x)F[x] is a field.



Examples. o F =R, p(x) = x*>+1.

The polynomial p(x) = x>+ 1 is irreducible over R. Hence
the factor ring R[x]//, where | = (x* + 1)R[x], is a field.
Any element of R[x]// is a coset g(x)+ /. It consists of all
polynomials in R[x] leaving a particular remainder when
divided by p(x). Therefore it is uniquely represented as

a-+ bx + | for some a,b € R. We obtain that

(a+bx+ 1)+ (@ +bx+1)=(a+ad)+(b+b)x+1,

(a+bx+ 1)@+ bx+1)=aa + (ab + ba')x + bb'x*> + |
= (aa’ — bb') + (ab' + ba')x + bb'(x* + 1) +
= (aa’ — bb') + (ab' + ba')x + |.

It follows that a map ¢ : C — R[x]// given for all a,b € R
by ¢(a+ bi) =a+ bx+ [ is an isomorphism of rings. Thus
R[x]/! is a model of complex numbers. Note that the
imaginary unit / corresponds to x + /, the coset of the
monomial x.



Problem. Let [F4, be a field with 4 elements and
[F, be its subfield with 2 elements. Find a
polynomial p € F,[x] that has no zeros in [F, but
has a zero in [Fy.

Let F, = {0,1,,8}. Then F, ={0,1}. Since {1,a, S} is
a multiplicative group (of order 3), it follows from Lagrange's
Theorem that x> =1 for all x € {1,,8}. In other words,
1, a and f3 are zeros of the polynomial g(x) = x> — 1.

We have x* —1 = (x — 1)(x* + x + 1), which holds over any
field. It follows that o and (3 are also zeros of the polynomial
p(x) = x* + x + 1. Note that p(0) = p(1) =1 #0.



o F =17 p(x)=x>+x+1.

We have p(0) = p(1) =1 # 0 so that p has no zeros in Z,.
Since deg(p) < 3, it follows that the polynomial p(x) is
irreducible over Z,. Therefore Zs[x]/(x?® + x + 1)Z,[x] is a
field. This factor ring consists of 4 elements: 0, 1, a and
a+ 1, where oo = x + p(x)Zy[x]. Observe that & and a + 1
are zeros of the polynomial p.

o F =7 p(x)=x3+x+1.

There are two polynomials of degree 3 irreducible over Z,:
p(x)=x*+x+1 and g(x) =p(x—1)=x>*+x*>+1. In
particular, the factor ring Z[x]/(x® + x + 1)Z[x] is a field.
It consists of 8 elements: 0, 1, 3, B+ 1, 52, B°+1, 247
and 32+ 3 +1, where 8 = x + p(x)Z[x]. Observe that j3,
B2 and 32 + 3 are zeros of the polynomial p while 5+ 1,
3?41 and B2+ 3+ 1 are zeros of the polynomial g.



