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Modern Algebra I

Lecture 23:

Prime and maximal ideals.

Ideals in polynomial rings.



Prime ideals

Definition. A (two-sided) ideal I in a ring R is called prime if
for any elements x , y ∈ R we have

xy ∈ I =⇒ x ∈ I or y ∈ I .

Example. In the ring Z, every nontrivial proper ideal is of the
form nZ, where n > 1. This ideal is prime if and only if n is
a prime number.

The entire ring R is always a prime ideal of itself. The trivial
ideal {0} is prime if and only if the ring R has no divisors of
zero.

Theorem The ideal I is prime in the ring R if and only if the
factor ring R/I has no divisors of zero.

Proof (“if”). Suppose xy ∈ I while x , y ∈ R \ I . Then
x + I 6= 0 + I and y + I 6= 0 + I while (x + I )(y + I ) =
xy + I = I so that x + I and y + I are divisors of zero in R/I .



Maximal ideals

Definition. A (two-sided) ideal I in a ring R is called maximal

if I 6= R and for any ideal J satisfying I ⊂ J ⊂ R , we have
J = I or J = R .

Example. In the ring Z, every nontrivial proper ideal is of the
form nZ, where n > 1. This ideal is contained in an ideal
mZ if and only if m divides n. It follows that the ideal nZ is
maximal if and only if it is prime.

Theorem A proper ideal I in the ring R is maximal if and
only if the factor ring R/I has no (two-sided) ideals other
than the trivial ideal and itself.

Definition. A non-trivial ring R is called simple if it has no
ideals other than the trivial ideal and itself.

A ring is simple if and only if the trivial ideal {0} is maximal.



Theorem A proper ideal I in the ring R is maximal
if and only if the factor ring R/I is simple.

Proof. Consider a map φ : R → R/I given by φ(x) = x + I
for all x ∈ R . This map is a homomorphism of rings.

Suppose R/I has a nontrivial proper ideal J ′. Then
J = φ−1(J ′) is an ideal in R such that I ⊂ J ⊂ R . Since
the map φ is onto, it follows that J 6= I and J 6= R . In
particular, the ideal I is not maximal.

Conversely, assume that there is an ideal J in R such that
I ⊂ J ⊂ R while J 6= I and J 6= R . Then J ′ = φ(J) is an
ideal in φ(R) = R/I . The ideal J ′ is nontrivial since J is not
contained in the kernel Ker(φ) = I . Since I ⊂ J , it follows
that φ(J) = J ′ is disjoint from φ(R \ J). In particular, J ′ is
a proper ideal in R/I .



Theorem Suppose R is a commutative ring with

unity. Then R is simple if and only if it is a field.

Proof. Assume R is a field and let I be a nontrivial ideal in R .
Take any nonzero element a ∈ I . Since R is a field, this
element admits a multiplicative inverse a−1. Then for any
x ∈ R we have x = 1x = (aa−1)x = a(a−1x) ∈ I . That is,
I = R .

Now assume R is not a field. Then there is a nonzero element
a ∈ R that does not admit a multiplicative inverse. Hence
aR = {ax | x ∈ R}, which is an ideal in R , does not contain
the unity 1. In particular, aR is a proper ideal. It is
nontrivial since a = a · 1 ∈ aR .



Corollary 1 Suppose R is a commutative ring with
unity. Then a proper ideal I ⊂ R is maximal if and

only if the factor ring R/I is a field.

Corollary 2 Suppose R is a commutative ring with
unity. Then any maximal ideal in R is prime.

Remark. If the ring R is not commutative then the

corollaries (and the preceding theorem) may fail.
For example, in the ring Mn,n(R) of n×n matrices
with real entries (n ≥ 2), the trivial ideal is maximal

but not prime. Note that this ring does have
one-sided proper nontrivial ideals.



Ideals in the ring of polynomials

Theorem Let F be a field. Then any ideal in the
ring F[x ] is of the form

p(x)F[x ] = {p(x)q(x) | q(x) ∈ F[x ]}

for some polynomial p(x) ∈ F[x ].

Theorem Let F be a field and p(x) ∈ F[x ] be a
polynomial of positive degree. Then the following

conditions are equivalent:
• p(x) is irreducible over F,

• the ideal p(x)F[x ] is prime,
• the ideal p(x)F[x ] is maximal,

• the factor ring F[x ]/p(x)F[x ] is a field.



Examples. • F = R, p(x) = x2 + 1.

The polynomial p(x) = x2 + 1 is irreducible over R. Hence
the factor ring R[x ]/I , where I = (x2 + 1)R[x ], is a field.
Any element of R[x ]/I is a coset q(x) + I . It consists of all
polynomials in R[x ] leaving a particular remainder when
divided by p(x). Therefore it is uniquely represented as
a + bx + I for some a, b ∈ R. We obtain that

(a + bx + I ) + (a′ + b′x + I ) = (a + a′) + (b + b′)x + I ,

(a + bx + I )(a′ + b′x + I ) = aa′ + (ab′ + ba′)x + bb′x2 + I
= (aa′ − bb′) + (ab′ + ba′)x + bb′(x2 + 1) + I
= (aa′ − bb′) + (ab′ + ba′)x + I .

It follows that a map φ : C → R[x ]/I given for all a, b ∈ R

by φ(a + bi) = a + bx + I is an isomorphism of rings. Thus
R[x ]/I is a model of complex numbers. Note that the
imaginary unit i corresponds to x + I , the coset of the
monomial x .



Problem. Let F4 be a field with 4 elements and

F2 be its subfield with 2 elements. Find a
polynomial p ∈ F2[x ] that has no zeros in F2, but

has a zero in F4.

Let F4 = {0, 1, α, β}. Then F2 = {0, 1}. Since {1, α, β} is
a multiplicative group (of order 3), it follows from Lagrange’s
Theorem that x3 = 1 for all x ∈ {1, α, β}. In other words,
1, α and β are zeros of the polynomial q(x) = x3 − 1.

We have x3 − 1 = (x − 1)(x2 + x + 1), which holds over any
field. It follows that α and β are also zeros of the polynomial
p(x) = x2 + x + 1. Note that p(0) = p(1) = 1 6= 0.



• F = Z2, p(x) = x2 + x + 1.

We have p(0) = p(1) = 1 6= 0 so that p has no zeros in Z2.
Since deg(p) ≤ 3, it follows that the polynomial p(x) is
irreducible over Z2. Therefore Z2[x ]/(x

2 + x + 1)Z2[x ] is a
field. This factor ring consists of 4 elements: 0, 1, α and
α + 1, where α = x + p(x)Z2[x ]. Observe that α and α + 1
are zeros of the polynomial p.

• F = Z2, p(x) = x3 + x + 1.

There are two polynomials of degree 3 irreducible over Z2:
p(x) = x3 + x + 1 and q(x) = p(x − 1) = x3 + x2 + 1. In
particular, the factor ring Z2[x ]/(x

3 + x + 1)Z2[x ] is a field.
It consists of 8 elements: 0, 1, β, β + 1, β2, β2 + 1, β2 + β
and β2 + β + 1, where β = x + p(x)Z2[x ]. Observe that β,
β2 and β2 + β are zeros of the polynomial p while β + 1,
β2 + 1 and β2 + β + 1 are zeros of the polynomial q.


