MATH 415 Modern Algebra I

Lecture 24: Factorization in integral domains. Principal ideal domains.

Unity and units

Let R be an **integral domain**, i.e., a commutative ring with the multiplicative identity element and no divisors of zero. The multiplicative identity, denoted 1, is called the **unity** of R. Any element of R that has a multiplicative inverse is called a **unit**. All units of R form a multiplicative group.

Examples. • Integers \mathbb{Z} .

Units are 1 and -1.

• Gaussian integers $\mathbb{Z}[\sqrt{-1}] = \{m + ni \in \mathbb{C} \mid m, n \in \mathbb{Z}\}.$ Units are 1, -1, *i*, and -*i*.

• \mathbb{F} : a field.

Units are all nonzero elements.

• $\mathbb{F}[x]$: polynomials in a variable x over a field \mathbb{F} . Units are all nonzero polynomials of degree 0.

Irreducible elements and factorization

Let R be an integral domain. A non-zero, non-unit element of R is called **irreducible** if it cannot be represented as a product of two non-units.

The ring *R* is called a **factorization ring** if every non-zero, non-unit element *x* can be expanded into a product $x = q_1q_2 \dots q_k$ of irreducible elements. Equivalently, $x = uq_1q_2 \dots q_k$, where *u* is a unit and each q_i is irreducible.

Two non-zero elements $x, y \in R$ are called **associates** of each other if x divides y and y divides x. An equivalent condition is that y = ux for some unit u. Any associate of a unit (resp. non-unit, irreducible) element is also a unit (resp. non-unit, irreducible).

Suppose $x = uq_1q_2...q_k$, where u is a unit and each q_i is irreducible. If $q'_1, q'_2, ..., q'_k$ are associates of $q_1, q_2, ..., q_k$, resp., then $x = u'q'_1q'_2...q'_k$ for some unit u'.

Examples of factorization rings

• Integers \mathbb{Z} .

Units are 1 and -1. Irreducible elements are primes and negative primes. Factorization into irreducible factors is, up to a sign, the usual prime factorization. It is unique up to rearranging the factors and changing their signs. For example, $-6 = (-1) \cdot 2 \cdot 3 = (-2) \cdot 3 = 2 \cdot (-3) = (-3) \cdot 2$.

• Polynomials $\mathbb{F}[x]$ over a field.

Units are all nonzero constants. Irreducible elements are exactly irreducible polynomials. Factorization into irreducible factors is unique up to rearranging the factors and multiplying them by constants.

Example of a non-factorization ring

• $\mathbb{Z} + x \mathbb{Q}[x]$: polynomials over \mathbb{Q} with integer constant terms.

This is a subring of $\mathbb{Q}[x]$. Units are 1 and -1. Irreducible elements are of the form $\pm p$, where p is a prime number, or $\pm q(x)$, where q(x) is an irreducible polynomial over \mathbb{Q} with the constant term 1. No element with zero constant term is irreducible; for example, $x = 2 \cdot \frac{1}{2}x$.

Integral norm

Let *R* be an integral domain. A function $N : R \setminus \{0\} \to \mathbb{Z}$ is called an **integral norm** on *R* if

- N(xy) = N(x)N(y) for all $x, y \in R \setminus \{0\}$,
- N(x) > 0 for all $x \in R \setminus \{0\}$,
- N(x) = 1 if and only if x is a unit.

Theorem If R admits an integral norm N then it is a factorization ring.

Proof: The proof is by strong induction on n = N(x), where x is a non-unit. Assume that factorization is possible for all non-units y with N(y) < n. If x is irreducible, we are done. Otherwise x = yz, where y and z are non-units. Then N(y), N(z) > 1 and N(y)N(z) = n, hence N(y), N(z) < n. By the inductive assumption, $y = uq_1q_2 \dots q_k$ and $z = u'q'_1q'_2 \dots q'_s$, where all q_i and q'_j are irreducible and u, u' are units. Then $x = (uu')q_1q_2 \dots q_kq'_1q'_2 \dots q'_s$, which completes the induction step.

Examples of integral norms

• Integers \mathbb{Z} . N(n) = |n|.

• $\mathbb{F}[x]$: polynomials in a variable x over a field \mathbb{F} . $N(p) = 2^{\deg(p)}$.

• Gaussian integers $\mathbb{Z}[\sqrt{-1}] = \{m + ni \in \mathbb{C} \mid m, n \in \mathbb{Z}\}.$ $N(m + ni) = (m + ni)(\overline{m + ni}) = m^2 + n^2$. If N(m + ni) = 1then $(m + ni)^{-1} = m - ni \in \mathbb{Z}[\sqrt{-1}]$ so that m + ni is a unit. Not every prime integer is irreducible in this ring. For example, 2 = (1 + i)(1 - i), 5 = (2 + i)(2 - i) = (1 + 2i)(1 - 2i).

•
$$\mathbb{Z}[\sqrt{3}] = \{m + n\sqrt{3} \mid m, n \in \mathbb{Z}\}.$$

 $N(m + n\sqrt{3}) = |(m + n\sqrt{3})(m - n\sqrt{3})| = |m^2 - 3n^2|.$
It turns out that the map $\phi : \mathbb{Z}[\sqrt{3}] \to \mathbb{Z}[\sqrt{3}]$ defined by
 $\phi(m + n\sqrt{3}) = m - n\sqrt{3}$ for all $m, n \in \mathbb{Z}$ is an automorphism
of the ring $\mathbb{Z}[\sqrt{3}].$

Unique factorization

Let R be a factorization ring. We say that R is a **unique** factorization domain if factorization of any non-unit element of R into a product of irreducible elements is unique up to rearranging the factors and multiplying them by units.

A non-zero, non-unit element $x \in R$ is called **prime** if, whenever x divides a product yz of two non-zero elements, it actually divides one of the factors y and z.

Proposition Every prime element is irreducible.

Theorem A factorization ring is a unique factorization domain if and only if every irreducible element is prime.

Example of non-unique factorization:

• $\mathbb{Z}[\sqrt{-5}] = \{m + ni\sqrt{5} \in \mathbb{C} \mid m, n \in \mathbb{Z}\}.$

Integral norm: $N(z) = z\overline{z}$, $N(m + ni\sqrt{5}) = m^2 + 5n^2$. This norm can never equal 2 or 3. Hence any element of norm 4, 6 or 9 is irreducible. Now $6 = 2 \cdot 3 = (1 + i\sqrt{5})(1 - i\sqrt{5})$.

Generators of an ideal

Let R be an integral domain.

Theorem 1 Suppose I_{α} , $\alpha \in A$ is a nonempty collection of ideals in R. Then the intersection $\bigcap_{\alpha} I_{\alpha}$ is also an ideal in R.

Let S be a set (or a list) of some elements of R. The **ideal** generated by S, denoted (S) or $\langle S \rangle$, is the smallest ideal in R that contains S.

Theorem 2 The ideal (S) is well defined. Indeed, it is the intersection of all ideals that contain S.

Theorem 3 If $S = \{a_1, a_2, \ldots, a_k\}$ then the ideal (S) consists of all elements of the form $r_1a_1 + r_2a_2 + \cdots + r_ka_k$, where $r_1, r_2, \ldots, r_k \in R$.

An ideal (a) = aR generated by a single element is called **principal**. The ring *R* is called a **principal ideal domain (PID)** if every ideal is principal.

Greatest common divisor

Definition. Let R be an integral domain. Given nonzero elements $a_1, a_2, \ldots, a_k \in R$, their greatest common divisor $gcd(a_1, a_2, \ldots, a_k)$ is an element $c \in R$ such that

• c is a common divisor of a_1, a_2, \ldots, a_k , i.e., $a_i = cq_i$ for some $q_i \in R$, $1 \le i \le k$,

• any common divisor of a_1, a_2, \ldots, a_k is a divisor of c as well.

If $gcd(a_1, a_2, ..., a_k)$ exists then it is unique up to multiplication by a unit.

Note that an element $c \in R$ is a common divisor of the elements a_1, a_2, \ldots, a_k if and only if all these elements belong to the principal ideal cR. Another common divisor d is a divisor of c if and only if $cR \subset dR$. Therefore $gcd(a_1, a_2, \ldots, a_k)$, if it exists, is a generator of the smallest principal ideal containing a_1, a_2, \ldots, a_k .

Theorem If *R* is a principal ideal domain, then (i) the greatest common divisor $gcd(a_1, a_2, ..., a_k)$ exists for any nonzero elements $a_1, a_2, ..., a_k \in R$; (ii) $gcd(a_1, a_2, ..., a_k) = r_1a_1 + r_2a_2 + \cdots + r_ka_k$ for some $r_1, r_2, ..., r_k \in R$.

Proof. Consider an ideal $I = (a_1, a_2, \ldots, a_k)$ generated by the elements a_1, a_2, \ldots, a_k . Since the ring R is a principal ideal domain, we have I = cR for some $c \in R$. It follows that $c = \gcd(a_1, a_2, \ldots, a_k)$. Moreover, since $c \in I$, we have $c = r_1a_1 + r_2a_2 + \cdots + r_ka_k$ for some $r_1, r_2, \ldots, r_k \in R$.

Theorem If a principal ideal domain is a factorization ring, then it is also a unique factorization domain.

Uniqueness of factorization

Let R be a principal ideal domain.

Proposition Let x be an irreducible element of R and suppose that x divides a product yz, where $y, z \in R \setminus \{0\}$. Then x divides at least one of the factors y and z.

Proof. Since x is irreducible, it follows that gcd(x, y) = x or 1. In the former case, y is divisible by x. In the latter case, we have rx + sy = 1 for some $r, s \in R$. Then z = z(rx + sy) = (zr)x + s(yz), which is divisible by x.

Corollary 1 Let x be an irreducible element of R and suppose that x divides a product $y_1y_2...y_r$ of nonzero elements of R. Then x divides at least one of the factors $y_1, y_2, ..., y_r$.

Corollary 2 Let x be an irreducible element of R that divides a product $p_1p_2...p_r$ of other irreducible elements. Then one of the factors $p_1, p_2, ..., p_r$ is an associate of x.

Relatively prime elements

Definition. Let R be an integral domain. Nonzero elements $a, b \in R$ are called **relatively prime** (or **coprime**) if gcd(a, b) = 1.

Theorem Suppose *R* is a principal ideal domain. If a nonzero element $c \in R$ is divisible by two coprime elements *a* and *b*, then it is divisible by their product *ab*.

Proof: By assumption, $c = aq_1$ and $c = bq_2$ for some $q_1, q_2 \in R$. Since gcd(a, b) = 1 and R is a principal ideal domain, it follows that $r_1a + r_2b = 1$ for some $r_1, r_2 \in R$. Then $c = c(r_1a + r_2b) = r_1ca + r_2cb = r_1q_2ab + r_2q_1ab = (r_1q_2 + r_2q_1)ab$, which implies that c is divisible by ab.

Corollary Suppose *R* is a principal ideal domain. If a nonzero element $c \in R$ is divisible by pairwise coprime elements a_1, a_2, \ldots, a_k , then it is divisible by their product $a_1a_2 \ldots a_k$.

Euclidean rings

Let *R* be an integral domain. A function $E : R \setminus \{0\} \to \mathbb{Z}_+$ is called a **Euclidean function** on *R* if for any $x, y \in R \setminus \{0\}$ we have x = qy + rfor some $q, r \in R$ such that r=0 or E(r) < E(y). The ring *R* is called a **Euclidean ring** (or **Euclidean domain**) if it admits a Euclidean

function. In a Euclidean ring, division with remainder is well defined (not necessarily uniquely).

Theorem Any Euclidean ring is a principal ideal domain.

Idea of the proof. Suppose *I* is a nonzero ideal in a Euclidean ring *R*. Let *a* be any element of *I* with the least value of the Euclidean function. Then I = aR.