MATH 415
Modern Algebra I

Lecture 24:
 Factorization in integral domains. Principal ideal domains.

Unity and units

Let R be an integral domain, i.e., a commutative ring with the multiplicative identity element and no divisors of zero.
The multiplicative identity, denoted 1 , is called the unity of R. Any element of R that has a multiplicative inverse is called a unit. All units of R form a multiplicative group.

Examples. - Integers \mathbb{Z}.
Units are 1 and -1 .

- Gaussian integers $\mathbb{Z}[\sqrt{-1}]=\{m+n i \in \mathbb{C} \mid m, n \in \mathbb{Z}\}$. Units are $1,-1, i$, and $-i$.
- \mathbb{F} : a field.

Units are all nonzero elements.

- $\mathbb{F}[x]$: polynomials in a variable x over a field \mathbb{F}.

Units are all nonzero polynomials of degree 0 .

Irreducible elements and factorization

Let R be an integral domain. A non-zero, non-unit element of R is called irreducible if it cannot be represented as a product of two non-units.

The ring R is called a factorization ring if every non-zero, non-unit element x can be expanded into a product $x=q_{1} q_{2} \ldots q_{k}$ of irreducible elements. Equivalently, $x=u q_{1} q_{2} \ldots q_{k}$, where u is a unit and each q_{i} is irreducible.
Two non-zero elements $x, y \in R$ are called associates of each other if x divides y and y divides x. An equivalent condition is that $y=u x$ for some unit u. Any associate of a unit (resp. non-unit, irreducible) element is also a unit (resp. non-unit, irreducible).
Suppose $x=u q_{1} q_{2} \ldots q_{k}$, where u is a unit and each q_{i} is irreducible. If $q_{1}^{\prime}, q_{2}^{\prime}, \ldots, q_{k}^{\prime}$ are associates of $q_{1}, q_{2}, \ldots, q_{k}$, resp., then $x=u^{\prime} q_{1}^{\prime} q_{2}^{\prime} \ldots q_{k}^{\prime}$ for some unit u^{\prime}.

Examples of factorization rings

- Integers \mathbb{Z}.

Units are 1 and -1 . Irreducible elements are primes and negative primes. Factorization into irreducible factors is, up to a sign, the usual prime factorization. It is unique up to rearranging the factors and changing their signs. For example, $-6=(-1) \cdot 2 \cdot 3=(-2) \cdot 3=2 \cdot(-3)=(-3) \cdot 2$.

- Polynomials $\mathbb{F}[x]$ over a field.

Units are all nonzero constants. Irreducible elements are exactly irreducible polynomials. Factorization into irreducible factors is unique up to rearranging the factors and multiplying them by constants.

Example of a non-factorization ring

- $\mathbb{Z}+x \mathbb{Q}[x]$: polynomials over \mathbb{Q} with integer constant terms.

This is a subring of $\mathbb{Q}[x]$. Units are 1 and -1 . Irreducible elements are of the form $\pm p$, where p is a prime number, or $\pm q(x)$, where $q(x)$ is an irreducible polynomial over \mathbb{Q} with the constant term 1. No element with zero constant term is irreducible; for example, $x=2 \cdot \frac{1}{2} x$.

Integral norm

Let R be an integral domain. A function $N: R \backslash\{0\} \rightarrow \mathbb{Z}$ is called an integral norm on R if

- $N(x y)=N(x) N(y)$ for all $x, y \in R \backslash\{0\}$,
- $N(x)>0$ for all $x \in R \backslash\{0\}$,
- $N(x)=1$ if and only if x is a unit.

Theorem If R admits an integral norm N then it is a factorization ring.

Proof: The proof is by strong induction on $n=N(x)$, where x is a non-unit. Assume that factorization is possible for all non-units y with $N(y)<n$. If x is irreducible, we are done. Otherwise $x=y z$, where y and z are non-units. Then $N(y), N(z)>1$ and $N(y) N(z)=n$, hence $N(y), N(z)<n$. By the inductive assumption, $y=u q_{1} q_{2} \ldots q_{k}$ and $z=u^{\prime} q_{1}^{\prime} q_{2}^{\prime} \ldots q_{s}^{\prime}$, where all q_{i} and q_{j}^{\prime} are irreducible and u, u^{\prime} are units. Then $x=\left(u u^{\prime}\right) q_{1} q_{2} \ldots q_{k} q_{1}^{\prime} q_{2}^{\prime} \ldots q_{s}^{\prime}$, which completes the induction step.

Examples of integral norms

- Integers \mathbb{Z}.

$$
N(n)=|n| .
$$

- $\mathbb{F}[x]$: polynomials in a variable x over a field \mathbb{F}.
$N(p)=2^{\operatorname{deg}(p)}$.
- Gaussian integers $\mathbb{Z}[\sqrt{-1}]=\{m+n i \in \mathbb{C} \mid m, n \in \mathbb{Z}\}$.
$N(m+n i)=(m+n i)(\overline{m+n i})=m^{2}+n^{2}$. If $N(m+n i)=1$ then $(m+n i)^{-1}=m-n i \in \mathbb{Z}[\sqrt{-1}]$ so that $m+n i$ is a unit. Not every prime integer is irreducible in this ring. For example, $2=(1+i)(1-i), 5=(2+i)(2-i)=(1+2 i)(1-2 i)$.
- $\mathbb{Z}[\sqrt{3}]=\{m+n \sqrt{3} \mid m, n \in \mathbb{Z}\}$.
$N(m+n \sqrt{3})=|(m+n \sqrt{3})(m-n \sqrt{3})|=\left|m^{2}-3 n^{2}\right|$. It turns out that the map $\phi: \mathbb{Z}[\sqrt{3}] \rightarrow \mathbb{Z}[\sqrt{3}]$ defined by $\phi(m+n \sqrt{3})=m-n \sqrt{3}$ for all $m, n \in \mathbb{Z}$ is an automorphism of the ring $\mathbb{Z}[\sqrt{3}]$.

Unique factorization

Let R be a factorization ring. We say that R is a unique factorization domain if factorization of any non-unit element of R into a product of irreducible elements is unique up to rearranging the factors and multiplying them by units.

A non-zero, non-unit element $x \in R$ is called prime if, whenever x divides a product $y z$ of two non-zero elements, it actually divides one of the factors y and z.

Proposition Every prime element is irreducible.
Theorem A factorization ring is a unique factorization domain if and only if every irreducible element is prime.

Example of non-unique factorization:

- $\mathbb{Z}[\sqrt{-5}]=\{m+n i \sqrt{5} \in \mathbb{C} \mid m, n \in \mathbb{Z}\}$.

Integral norm: $N(z)=z \bar{z}, N(m+n i \sqrt{5})=m^{2}+5 n^{2}$. This norm can never equal 2 or 3 . Hence any element of norm 4, 6 or 9 is irreducible. Now $6=2 \cdot 3=(1+i \sqrt{5})(1-i \sqrt{5})$.

Generators of an ideal

Let R be an integral domain.
Theorem 1 Suppose $I_{\alpha}, \alpha \in A$ is a nonempty collection of ideals in R. Then the intersection $\bigcap_{\alpha} I_{\alpha}$ is also an ideal in R.

Let S be a set (or a list) of some elements of R. The ideal generated by S, denoted (S) or $\langle S\rangle$, is the smallest ideal in R that contains S.

Theorem 2 The ideal (S) is well defined. Indeed, it is the intersection of all ideals that contain S.

Theorem 3 If $S=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ then the ideal (S) consists of all elements of the form $r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{k} a_{k}$, where $r_{1}, r_{2}, \ldots, r_{k} \in R$.

An ideal $(a)=a R$ generated by a single element is called principal. The ring R is called a principal ideal domain (PID) if every ideal is principal.

Greatest common divisor

Definition. Let R be an integral domain. Given nonzero elements $a_{1}, a_{2}, \ldots, a_{k} \in R$, their greatest common divisor $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is an element $c \in R$ such that

- c is a common divisor of $a_{1}, a_{2}, \ldots, a_{k}$, i.e., $a_{i}=c q_{i}$ for some $q_{i} \in R, 1 \leq i \leq k$,
- any common divisor of $a_{1}, a_{2}, \ldots, a_{k}$ is a divisor of c as well.

If $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ exists then it is unique up to multiplication by a unit.

Note that an element $c \in R$ is a common divisor of the elements $a_{1}, a_{2}, \ldots, a_{k}$ if and only if all these elements belong to the principal ideal $c R$. Another common divisor d is a divisor of c if and only if $c R \subset d R$. Therefore $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, if it exists, is a generator of the smallest principal ideal containing $a_{1}, a_{2}, \ldots, a_{k}$.

Theorem If R is a principal ideal domain, then
(i) the greatest common divisor $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ exists for any nonzero elements $a_{1}, a_{2}, \ldots, a_{k} \in R$;
(ii) $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)=r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{k} a_{k}$ for some $r_{1}, r_{2}, \ldots, r_{k} \in R$.

Proof. Consider an ideal $I=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ generated by the elements $a_{1}, a_{2}, \ldots, a_{k}$. Since the ring R is a principal ideal domain, we have $I=c R$ for some $c \in R$. It follows that $c=\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. Moreover, since $c \in I$, we have $c=r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{k} a_{k}$ for some $r_{1}, r_{2}, \ldots, r_{k} \in R$.

Theorem If a principal ideal domain is a factorization ring, then it is also a unique factorization domain.

Uniqueness of factorization

Let R be a principal ideal domain.
Proposition Let x be an irreducible element of R and suppose that x divides a product $y z$, where $y, z \in R \backslash\{0\}$. Then x divides at least one of the factors y and z.
Proof. Since x is irreducible, it follows that $\operatorname{gcd}(x, y)=x$ or 1. In the former case, y is divisible by x. In the latter case, we have $r x+s y=1$ for some $r, s \in R$. Then $z=z(r x+s y)=(z r) x+s(y z)$, which is divisible by x.

Corollary 1 Let x be an irreducible element of R and suppose that x divides a product $y_{1} y_{2} \ldots y_{r}$ of nonzero elements of R. Then x divides at least one of the factors $y_{1}, y_{2}, \ldots, y_{r}$.

Corollary 2 Let x be an irreducible element of R that divides a product $p_{1} p_{2} \ldots p_{r}$ of other irreducible elements. Then one of the factors $p_{1}, p_{2}, \ldots, p_{r}$ is an associate of x.

Relatively prime elements

Definition. Let R be an integral domain. Nonzero elements $a, b \in R$ are called relatively prime (or coprime) if $\operatorname{gcd}(a, b)=1$.

Theorem Suppose R is a principal ideal domain. If a nonzero element $c \in R$ is divisible by two coprime elements a and b, then it is divisible by their product $a b$.

Proof: By assumption, $c=a q_{1}$ and $c=b q_{2}$ for some $q_{1}, q_{2} \in R$. Since $\operatorname{gcd}(a, b)=1$ and R is a principal ideal domain, it follows that $r_{1} a+r_{2} b=1$ for some $r_{1}, r_{2} \in R$. Then $c=c\left(r_{1} a+r_{2} b\right)=r_{1} c a+r_{2} c b=r_{1} q_{2} a b+r_{2} q_{1} a b$ $=\left(r_{1} q_{2}+r_{2} q_{1}\right) a b$, which implies that c is divisible by $a b$.

Corollary Suppose R is a principal ideal domain. If a nonzero element $c \in R$ is divisible by pairwise coprime elements $a_{1}, a_{2}, \ldots, a_{k}$, then it is divisible by their product $a_{1} a_{2} \ldots a_{k}$.

Euclidean rings

Let R be an integral domain. A function
$E: R \backslash\{0\} \rightarrow \mathbb{Z}_{+}$is called a Euclidean function
on R if for any $x, y \in R \backslash\{0\}$ we have $x=q y+r$ for some $q, r \in R$ such that $r=0$ or $E(r)<E(y)$.
The ring R is called a Euclidean ring (or Euclidean domain) if it admits a Euclidean function. In a Euclidean ring, division with remainder is well defined (not necessarily uniquely).

Theorem Any Euclidean ring is a principal ideal domain.
Idea of the proof. Suppose I is a nonzero ideal in a Euclidean ring R. Let a be any element of I with the least value of the Euclidean function. Then $I=a R$.

