Lecture 19:
Alternating group.
Abstract groups.
Sign of a permutation

Theorem 1 (i) Any permutation is a product of transpositions.

(ii) If \(\pi = \tau_1 \tau_2 \ldots \tau_n = \tau'_1 \tau'_2 \ldots \tau'_m \), where \(\tau_i, \tau'_j \) are transpositions, then the numbers \(n \) and \(m \) are of the same parity.

A permutation \(\pi \) is called **even** if it is a product of an even number of transpositions, and **odd** if it is a product of an odd number of transpositions.

The **sign** \(\text{sgn}(\pi) \) of the permutation \(\pi \) is defined to be \(+1\) if \(\pi \) is even, and \(-1\) if \(\pi \) is odd.

Theorem 2 (i) \(\text{sgn}(\pi \sigma) = \text{sgn}(\pi) \text{sgn}(\sigma) \) for any \(\pi, \sigma \in S(n) \).

(ii) \(\text{sgn}(\pi^{-1}) = \text{sgn}(\pi) \) for any \(\pi \in S(n) \).

(iii) \(\text{sgn}(\text{id}) = 1 \).

(iv) \(\text{sgn}(\tau) = -1 \) for any transposition \(\tau \).

(v) \(\text{sgn}(\sigma) = (-1)^{r-1} \) for any cycle \(\sigma \) of length \(r \).
Alternating group

Given an integer \(n \geq 2 \), the alternating group on \(n \) symbols, denoted \(A_n \) or \(A(n) \), is the set of all even permutations in the symmetric group \(S(n) \).

Theorem (i) For any two permutations \(\pi, \sigma \in A(n) \), the product \(\pi \sigma \) is also in \(A(n) \).

(ii) The identity function \(\text{id} \) is in \(A(n) \).

(iii) For any permutation \(\pi \in A(n) \), the inverse \(\pi^{-1} \) is in \(A(n) \).

In other words, the product of even permutations is even, the identity function is an even permutation, and the inverse of an even permutation is even.

Theorem The alternating group \(A(n) \) has \(n!/2 \) elements.

Proof: Consider the function \(F : A(n) \to S(n) \setminus A(n) \) given by \(F(\pi) = (1 \ 2)\pi \). One can observe that \(F \) is bijective. It follows that the sets \(A(n) \) and \(S(n) \setminus A(n) \) have the same number of elements.
Examples. • The alternating group $A(3)$ has 3 elements: the identity function and two cycles of length 3, $(1\ 2\ 3)$ and $(1\ 3\ 2)$.

• The alternating group $A(4)$ has 12 elements of the following cycle shapes: id, $(1\ 2\ 3)$, and $(1\ 2)(3\ 4)$.

• The alternating group $A(5)$ has 60 elements of the following cycle shapes: id, $(1\ 2\ 3)$, $(1\ 2)(3\ 4)$, and $(1\ 2\ 3\ 4\ 5)$.
Abstract groups

Definition. A **group** is a set \mathcal{G}, together with a binary operation \ast, that satisfies the following axioms:

(G1: closure)
for all elements g and h of \mathcal{G}, $g \ast h$ is an element of \mathcal{G};

(G2: associativity)
$(g \ast h) \ast k = g \ast (h \ast k)$ for all $g, h, k \in \mathcal{G}$;

(G3: existence of identity)
there exists an element $e \in \mathcal{G}$, called the **identity** (or **unit**) of \mathcal{G}, such that $e \ast g = g \ast e = g$ for all $g \in \mathcal{G}$;

(G4: existence of inverse)
for every $g \in \mathcal{G}$ there exists an element $h \in \mathcal{G}$, called the **inverse** of g, such that $g \ast h = h \ast g = e$.

The group (\mathcal{G}, \ast) is said to be **commutative** (or **Abelian**) if it satisfies an additional axiom:

(G5: commutativity) $g \ast h = h \ast g$ for all $g, h \in \mathcal{G}$.
Basic examples. • Real numbers \mathbb{R} with addition.

(G1) $x, y \in \mathbb{R} \implies x + y \in \mathbb{R}$
(G2) $(x + y) + z = x + (y + z)$
(G3) the identity element is 0 as $x + 0 = 0 + x = x$
(G4) the inverse of x is $-x$ as $x + (-x) = (-x) + x = 0$
(G5) $x + y = y + x$

• Nonzero real numbers $\mathbb{R} \setminus \{0\}$ with multiplication.

(G1) $x \neq 0$ and $y \neq 0 \implies xy \neq 0$
(G2) $(xy)z = x(yz)$
(G3) the identity element is 1 as $x1 = 1x = x$
(G4) the inverse of x is x^{-1} as $xx^{-1} = x^{-1}x = 1$
(G5) $xy = yx$
The two basic examples give rise to two kinds of notation for a general group \((G, \ast)\).

Multiplicative notation: We think of the group operation \(\ast\) as some kind of multiplication, namely,
- \(a \ast b\) is denoted \(ab\),
- the identity element is denoted 1,
- the inverse of \(g\) is denoted \(g^{-1}\).

Additive notation: We think of the group operation \(\ast\) as some kind of addition, namely,
- \(a \ast b\) is denoted \(a + b\),
- the identity element is denoted 0,
- the inverse of \(g\) is denoted \(-g\).

Remark. Default notation is multiplicative (but the identity element may be denoted \(e\) or \(id\)). The additive notation is used only for commutative groups.
• Integers \(\mathbb{Z} \) with addition.

(G1) \(a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z} \)

(G2) \((a + b) + c = a + (b + c) \)

(G3) the identity element is 0 as \(a + 0 = 0 + a = a \) and \(0 \in \mathbb{Z} \)

(G4) the inverse of \(a \in \mathbb{Z} \) is \(-a\) as \(a + (-a) = (-a) + a = 0 \) and \(-a \in \mathbb{Z}\)

(G5) \(a + b = b + a \)
More examples

- The set \(\mathbb{Z}_n \) of congruence classes modulo \(n \) with addition.

(G1) \([a], [b] \in \mathbb{Z}_n \implies [a] + [b] = [a + b] \in \mathbb{Z}_n\)

(G2) \(([a] + [b]) + [c] = [a + b + c] = [a] + ([b] + [c])\)

(G3) the identity element is \([0]\) as \([a] + [0] = [0] + [a] = [a]\)

(G4) the inverse of \([a]\) is \([−a]\) as \([a] + [−a] = [−a] + [a] = [0]\)

(G5) \([a] + [b] = [a + b] = [b] + [a]\)
More examples

- The set G_n of invertible congruence classes modulo n with multiplication.

A congruence class $[a]_n \in \mathbb{Z}_n$ belongs to G_n if $\gcd(a, n) = 1$.

(G1) $[a]_n, [b]_n \in G_n \implies \gcd(a, n) = \gcd(b, n) = 1 \implies \gcd(ab, n) = 1 \implies [a]_n[b]_n = [ab]_n \in G_n$

(G2) $([a][b])[c] = [abc] = [a]([b][c])$

(G3) the identity element is $[1]$ as $[a][1] = [1][a] = [a]$

(G4) the inverse of $[a]$ is $[a]^{-1}$ by definition of $[a]^{-1}$

(G5) $[a][b] = [ab] = [b][a]$
More examples

- Permutations $S(n)$ with composition ($= \text{multiplication}$).

(G1) π and σ are bijective functions from the set $\{1, 2, \ldots, n\}$ to itself \implies so is $\pi \sigma$

(G2) $(\pi \sigma) \tau$ and $\pi (\sigma \tau)$ applied to k, $1 \leq k \leq n$, both yield $\pi(\sigma(\tau(k)))$.

(G3) the identity element is id as $\pi \text{id} = \text{id} \pi = \pi$

(G4) the inverse of π is π^{-1} by definition of the inverse function

(G5) fails for $n \geq 3$ as $(1 2)(2 3) = (1 2 3)$ while $(2 3)(1 2) = (1 3 2)$.
More examples

• Even permutations $A(n)$ with multiplication.

(G1) π and σ are even permutations $\implies \pi \sigma$ is even

(G2) $(\pi \sigma) \tau = \pi (\sigma \tau)$ holds in $A(n)$ as it holds in a larger set $S(n)$

(G3) the identity element from $S(n)$, which is id, is an even permutation, hence it is the identity element in $A(n)$ as well

(G4) π is an even permutation $\implies \pi^{-1}$ is also even

(G5) fails for $n \geq 4$ as $(1 \ 2 \ 3)(2 \ 3 \ 4) = (1 \ 2)(3 \ 4)$ while $(2 \ 3 \ 4)(1 \ 2 \ 3) = (1 \ 3)(2 \ 4)$.
Basic properties of groups

• The identity element is unique.
Assume that e_1 and e_2 are identity elements. Then $e_1 = e_1 e_2 = e_2$.

• The inverse element is unique.
Assume that h_1 and h_2 are inverses of an element g. Then $h_1 = h_1 e = h_1(gh_2) = (h_1 g)h_2 = eh_2 = h_2$.

• $(ab)^{-1} = b^{-1} a^{-1}$.
We need to show that $(ab)(b^{-1} a^{-1}) = (b^{-1} a^{-1})(ab) = e$. Indeed, $(ab)(b^{-1} a^{-1}) = ((ab)b^{-1}) a^{-1} = (a(bb^{-1})) a^{-1} = (ae)a^{-1} = aa^{-1} = e$. Similarly, $(b^{-1} a^{-1})(ab) = b^{-1}(a^{-1}(ab)) = b^{-1}((a^{-1} a)b) = b^{-1}(eb) = b^{-1} b = e$.

• $(a_1 a_2 \ldots a_n)^{-1} = a_n^{-1} \ldots a_2^{-1} a_1^{-1}$.