Sample problems for the final exam Any problem may be altered or replaced by a different one!

Problem 1 The number 63000 has how many positive divisors?

Problem 2 Solve a system of congruences (find all solutions):

$$
\left\{\begin{array}{l}
x \equiv 2 \bmod 5, \\
x \equiv 3 \bmod 6, \\
x \equiv 6 \bmod 7 .
\end{array}\right.
$$

Problem 3 Find all integer solutions of a system

$$
\left\{\begin{array}{l}
2 x+5 y-z=1 \\
x-2 y+3 z=2 .
\end{array}\right.
$$

[Hint: Eliminate one of the variables.]

Problem 4 You receive a message that was encrypted using the RSA system with public key (55,27), where 55 is the base and 27 is the exponent. The encrypted message, in two blocks, is $4 / 7$. Find the private key and decrypt the message.

Problem 5 Consider a relation \sim on the symmetric group $S(n)$ defined as follows. For any $\pi, \sigma \in S(n)$ we let $\pi \sim \sigma$ if and only if π is conjugate to σ, which means that $\pi=\tau \sigma \tau^{-1}$ for some permutation $\tau \in S(n)$. Show that \sim is an equivalence relation.

Problem 6 Let $\pi=(12)(23)(34)(45)(56), \sigma=(123)(234)(345)(456)$. Find the order and the sign of the following permutations: $\pi, \sigma, \pi \sigma$, and $\sigma \pi$.

Problem 7 For any positive integer n let $n \mathbb{Z}$ denote the set of all integers divisible by n. Does the set $3 \mathbb{Z} \cup 4 \mathbb{Z} \cup 7 \mathbb{Z}$ form a semigroup under addition? Does it form a group? Explain.

Problem 8 Given a group G, an element $g \in G$ is called central if it commutes with any element of G. The set of all central elements, denoted $C(G)$, is called the center of G. Prove that $C(G)$ is a normal subgroup of G.

Problem 9 (i) List all cyclic subgroups of the alternating group $A(4)$.
(ii) List all non-cyclic subgroups of $A(4)$.

Problem 10 All Abelian groups of order 36 form how many isomorphism classes?

Problem 11 A linear binary coding function f is defined by a generator matrix

$$
G=\left(\begin{array}{lllllll}
0 & \square & 0 & 1 & 1 & 0 & 1 \\
1 & \square & 0 & 1 & 1 & 1 & 0 \\
0 & \square & 1 & 1 & 0 & 1 & 1
\end{array}\right)
$$

with some entries missing. Fill in the missing entries so that f can detect as many errors as possible. Explain.

Problem 12 The polynomial $f(x)=x^{6}+3 x^{5}-5 x^{3}+3 x-1$ has how many distinct complex roots?
[Hint: Multiple roots of f are also roots of the derivative f^{\prime}.]

