
MATH 433 Spring 2019

Sample problems for the final exam: Some solutions

Any problem may be altered or replaced by a different one!

Problem 1 The number 63000 has how many positive divisors?

Solution: 96.

First we decompose the given number into a product of primes:

63000 = 63 · 103 = (7 · 9) · (2 · 5)3 = 23 · 32 · 53 · 7.

An integer n ≥ 2 is a divisor of 63000 if and only if its prime factorisation is part of the above prime
factorisation, that is, if n = 2m13m25m37m4 , where 0 ≤ m1 ≤ 3, 0 ≤ m2 ≤ 2, 0 ≤ m3 ≤ 3, and
0 ≤ m4 ≤ 1. Note that the divisor n = 1 admits this representation as well, with m1 = m2 =
m3 = m4 = 0. By the Unique Factorisation Theorem, the quadruple (m1,m2,m3,m4) is uniquely
determined by n. Thus we have a one-to-one correspondence between positive divisors of 63000 and
elements of a Cartesian product {0, 1, 2, 3}×{0, 1, 2}×{0, 1, 2, 3}×{0, 1}. The Cartesian product has
4 · 3 · 4 · 2 = 96 elements.

Problem 2 Solve a system of congruences (find all solutions):






x ≡ 2mod 5,
x ≡ 3mod 6,
x ≡ 6mod 7.

Solution: x = 27 + 210k, k ∈ Z.

The moduli 5, 6 and 7 are pairwise coprime. By the generalized Chinese Remainder Theorem, all
solutions of the system form a single congruence class modulo 5 · 6 · 7 = 210. It remains to find a
particular solution. One way to do this is to represent 1 as an integral linear combination of 6 ·7 = 42,
5 · 7 = 35 and 5 · 6 = 30 (note that 1 is the greatest common divisor of these numbers). Let us apply
the generalized Euclidean algorithm (in matrix form) to 42, 35 and 30:





1 0 0 42
0 1 0 35
0 0 1 30



 →





1 0 −1 12
0 1 0 35
0 0 1 30



 →





1 0 −1 12
−2 1 2 11
0 0 1 30



 →





3 −1 −3 1
−2 1 2 11
0 0 1 30



 .

From the first row of the last matrix we read off that 3(6 · 7)− 1(5 · 7)− 3(5 · 6) = 1. Then one of the
solutions is x = 2(3 · 6 · 7) + 3(−1 · 5 · 7) + 6(−3 · 5 · 6) = 252− 105− 540 = −393. Another solution is
−393 + 2 · 210 = 27.

Problem 3 Find all integer solutions of a system
{

2x+ 5y − z = 1,
x− 2y + 3z = 2.
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Solution: x = −3− 13k, y = 2 + 7k, z = 3 + 9k, where k ∈ Z.

First we solve the second equation for x and substitute it into the first equation:

{

2x+ 5y − z = 1,
x− 2y + 3z = 2

⇐⇒

{

2(2y − 3z + 2) + 5y − z = 1,
x = 2y − 3z + 2

⇐⇒

{

9y − 7z = −3,
x = 2y − 3z + 2.

For any integer solution of the equation 9y − 7z = −3, the number y is a solution of the linear
congruence 9y ≡ −3mod 7. Solving the congruence, we obtain

9y ≡ −3mod 7 ⇐⇒ 2y ≡ 4mod 7 ⇐⇒ y ≡ 2mod 7.

Hence y = 2 + 7k, where k ∈ Z. Now we find z and x by back substitution: z = (9y + 3)/7 =
(9(2 + 7k) + 3)/7 = 3 + 9k and x = 2y − 3z + 2 = 2(2 + 7k)− 3(3 + 9k) + 2 = −3− 13k. Note that z
and x are integers for all k ∈ Z.

Problem 4 You receive a message that was encrypted using the RSA system with public
key (55, 27), where 55 is the base and 27 is the exponent. The encrypted message, in two blocks,
is 4/7. Find the private key and decrypt the message.

Solution: The private key is (55, 3), the decrypted message is 9/13.

First we find φ(55). The prime factorisation of 55 is 5 · 11, hence

φ(55) = φ(5)φ(11) = (5− 1)(11 − 1) = 40.

The private key is (55, β), where the exponent β is the inverse of 27 (the exponent from the public
key) modulo φ(55) = 40. It is easy to find by inspection that β = 3 (as 3 · 27 = 81 ≡ 1 mod 40). The
standard way to find β is to apply the Euclidean algorithm (in matrix form) to 27 and 40:

(

1 0 27
0 1 40

)

→

(

1 0 27
−1 1 13

)

→

(

3 −2 1
−1 1 13

)

.

From the first row we read off that 3 · 27− 2 · 40 = 1, which implies that 3 is the inverse of 27 modulo
40.

Now that we know the private key, the decrypted message is b1/b2, where b1 ≡ 43 mod 55, b2 ≡
73 mod 55, and 0 ≤ b1, b2 < 55. We find that b1 = 9, b2 = 13.

Problem 5 Consider a relation ∼ on the symmetric group S(n) defined as follows. For
any π, σ ∈ S(n) we let π ∼ σ if and only if π is conjugate to σ, which means that π = τστ−1

for some permutation τ ∈ S(n). Show that ∼ is an equivalence relation.

We have to show that the relation ∼ is reflexive, symmetric, and transitive.
Reflexivity. π ∼ π for all π ∈ S(n) since π = τπτ−1 holds for τ = id (as well as for τ = π).
Symmetry. Assume π ∼ σ, that is, π = τστ−1 for some τ ∈ S(n). Then

σ = τ−1πτ = τ−1π(τ−1)−1 = τ0πτ
−1
0

,

where τ0 = τ−1 ∈ S(n). Hence σ ∼ π.
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Transitivity. Assume π ∼ σ and σ ∼ ρ, that is, π = τ1στ
−1

1
and σ = τ2ρτ

−1

2
for some

τ1, τ2 ∈ S(n). Then

π = τ1(τ2ρτ
−1
2

)τ−1
1

= (τ1τ2)ρ(τ
−1
2

τ−1
1

) = (τ1τ2)ρ(τ1τ2)
−1 = τρτ−1,

where τ = τ1τ2 ∈ S(n). Hence π ∼ ρ.

Problem 6 Let π = (1 2)(2 3)(3 4)(4 5)(5 6), σ = (1 2 3)(2 3 4)(3 4 5)(4 5 6). Find the order
and the sign of the following permutations: π, σ, πσ, and σπ.

Solution: π has order 6, σ has order 2, πσ and σπ have order 4. The sign of σ is +1, the
sign of π, πσ and σπ is −1.

Any transposition is an odd permutation, its sign is −1. Any cycle of length 3 is an even permu-
tation, its sign is +1. Since the sign is a multiplicative function, we obtain that sgn(π) = (−1)5 = −1,
sgn(σ) = 14 = 1, and sgn(πσ) = sgn(σπ) = sgn(π) sgn(σ) = −1.

To find the order of a permutation, we need to decompose it into a product of disjoint cycles.
First we decompose π and σ: π = (1 2 3 4 5 6), σ = (1 2)(5 6). Then we use these decompositions to
decompose πσ and σπ: πσ = (1 3 4 5), σπ = (2 3 4 6). The order of a product of disjoint cycles equals
the least common multiple of their lengths. Therefore o(π) = 6, o(σ) = 2, and o(πσ) = o(σπ) = 4.

Problem 7 For any positive integer n let nZ denote the set of all integers divisible by n.
Does the set 3Z ∪ 4Z ∪ 7Z form a semigroup under addition? Does it form a group? Explain.

Solution: The set 3Z ∪ 4Z ∪ 7Z is neither a semigroup nor a group.

The set S = 3Z ∪ 4Z ∪ 7Z consists of all integers divisible by at least one of the numbers 3, 4 and
7. This set is not closed under the operation of addition. For example, the numbers 4 and 7 belong to
S while their sum 4 + 7 = 11 does not. Therefore S is neither a semigroup nor a group with respect
to addition.

Problem 8 Given a group G, an element g ∈ G is called central if it commutes with any
element of G. The set of all central elements, denoted C(G), is called the center of G. Prove
that C(G) is a normal subgroup of G.

We need to show that the set C(G) is nonempty, closed under the group operation, and closed
under taking the inverse. Clearly, the identity element e of the group G commutes with all elements
of G. Hence e ∈ C(G). In particular, C(G) is not empty.

Assume g1, g2 ∈ C(G). Then for any h ∈ G we have g1h = hg1 and g2h = hg2. It follows that
(g1g2)h = g1(g2h) = g1(hg2) = (g1h)g2 = (hg1)g2 = h(g1g2). Hence g1g2 is central as well.

Assume g ∈ C(G). Then for any h ∈ G we have gh = hg. It follows that g−1h = g−1h(gg−1) =
g−1(hg)g−1 = g−1(gh)g−1 = (g−1g)hg−1 = hg−1. Hence g−1 is central as well.

Problem 9 (i) List all cyclic subgroups of the alternating group A(4).
(ii) List all non-cyclic subgroups of A(4).
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Solution: cyclic subgroups are {id}, {id, (1 2)(3 4)}, {id, (1 3)(2 4)}, {id, (1 4)(2 3)}, {id,
(1 2 3), (1 3 2)}, {id, (1 2 4), (1 4 2)}, {id, (1 3 4), (1 4 3)} and {id, (2 3 4), (2 4 3)}; non-cyclic sub-
groups are {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} and A(4).

Problem 10 All Abelian groups of order 36 form how many isomorphism classes?

Solution: 4.

According to the classification of finite Abelian groups, any such group is isomorphic to a direct
product of cyclic groups of the form Zp

m1

1

×Zp
m2

2

×· · ·×Z
p
mk

k

, where k ≥ 1, each pi is a prime number,

and each mi is a positive integer. Moreover, the sequence of orders pm1

1
, pm2

2
, . . . , pmk

k of the cyclic
groups is unique up to to rearranging its terms. Note that the order of the Abelian group is the same
as the order of the direct product, which equals pm1

1
pm2

2
. . . pmk

k .
The prime factorisation of the number 36 is 22 ·32. Up to rearranging the factors, there are 4 ways

to decompose it as a product of prime powers: 36 = 22 · 32 = 2 · 2 · 32 = 22 · 3 · 3 = 2 · 2 · 3 · 3. It
follows that all Abelian groups of order 36 form 4 isomorphism classes, represented by groups Z4×Z9,
Z2 × Z2 × Z9, Z4 × Z3 × Z3 and Z2 × Z2 × Z3 × Z3.

Problem 11 A linear binary coding function f is defined by a generator matrix

G =





0 0 1 1 0 1

1 0 1 1 1 0

0 1 1 0 1 1





with some entries missing. Fill in the missing entries so that f can detect as many errors as
possible. Explain.

Solution: G =





0 1 0 1 1 0 1
1 0 0 1 1 1 0
0 0 1 1 0 1 1



.

The maximal number of errors detected by a linear binary code equals k−1, where k is the minimal
weight of nonzero codewords. Suppose

G =





0 a1 0 1 1 0 1
1 a2 0 1 1 1 0
0 a3 1 1 0 1 1



 ,

where a1, a2, a3 ∈ {0, 1}. Codewords of f are linear combinations of rows of the matrix G (regarded
as vectors in Z

7
2). In particular, 0a101101 is the first row, 1(a1 + a2)00011 is the sum of the first two

rows, and 0(a1 + a3)10110 is the sum of the first and the last rows. If (a1, a2, a3) 6= (1, 0, 0) then at
least one of those three codewords has weight 3. On the other hand, in the case (a1, a2, a3) = (1, 0, 0)
all seven nonzero codewords have weight 4: 0101101, 1001110, 0011011, 1100011, 0110110, 1010101,
and 1111000. Thus the maximal possible number of detected errors is 3, achieved for a unique choice
of missing entries.

Problem 12 The polynomial f(x) = x6+3x5−5x3+3x−1 has how many distinct complex
roots?
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Solution: 2.

The Fundamental Theorem of Algebra implies that any polynomial p of degree n ≥ 1 with complex
coefficients can be represented as p(x) = c(x − α1)(x − α2) . . . (x − αn), where c, α1, . . . , αn ∈ C and
c 6= 0. The numbers α1, α2, . . . , αn are roots of p, they need not be distinct. We say that α is a root
of multiplicity k ≥ 1 if p(x) is divisible by (x − α)k but not divisible by (x − α)k+1. An equivalent
condition is that p(x) = (x − α)kq(x) for some polynomial q such that q(α) 6= 0. If this is the case
then

p′(x) =
(

(x− α)k
)

′

q(x) + (x− α)kq′(x) = k(x− α)k−1q(x) + (x− α)kq′(x) = (x− α)k−1r(x),

where r(x) = kq(x) + (x − α)q′(x) is a polynomial and r(α) = kq(α) 6= 0. Hence α is a root of p′ of
multiplicity k − 1 if k > 1 and not a root of p′ if k = 1. We have

p(x) = c(x− β1)
k1(x− β2)

k2 . . . (x− βm)km ,

where β1, . . . , βm are distinct roots of p and k1, . . . , km are their multiplicities. It follows from the
above that

gcd(p(x), p′(x)) = (x− β1)
k1−1(x− β2)

k2−1 . . . (x− βm)km−1.

As a consequence, the number of distinct roots of the polynomial p equals deg(p)− deg(gcd(p, p′)).
To find the greatest common divisor of the polynomials f(x) = x6 + 3x5 − 5x3 + 3x − 1 and

f ′(x) = 6x5 + 15x4 − 15x2 + 3, we use the Euclidean algorithm. First we divide f by f ′:

x6 + 3x5 − 5x3 + 3x− 1 = (6x5 + 15x4 − 15x2 + 3)
(1

6
x+

1

12

)

−
5

4
x4 −

5

2
x3 +

5

4
x2 +

5

2
x−

5

4
.

It is convenient to replace the remainder r(x) = −5

4
x4 − 5

2
x3 + 5

4
x2 + 5

2
x − 5

4
by its scalar multiple

r̃(x) = −4

5
r(x) = x4 + 2x3 − x2 − 2x+ 1. Next we divide f ′ by r̃:

6x5 + 15x4 − 15x2 + 3 = (x4 + 2x3 − x2 − 2x+ 1)(6x+ 3).

Since f ′ is divisible by r̃, it follows that gcd(f, f ′) = gcd(f ′, r) = gcd(f ′, r̃) = r̃. Thus the number of
distinct complex roots of the polynomial f equals deg(f)− deg(gcd(f, f ′)) = 6− 4 = 2.
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